New evidence about the relationship between water channel activity and calcium in salinity-stressed pepper plants

被引:37
作者
Cabañero, FJ
Martínez-Ballesta, MC
Teruel, JA
Carvajal, M
机构
[1] CSIC, Ctr Edafol & Biol Aplicada Segura, Dept Nutr Vegetal, Murcia 30100, Spain
[2] Univ Murcia, Dept Bioquim, E-30100 Murcia, Spain
关键词
aquaporin; calcium; osmotic water permeability; pepper; salinity;
D O I
10.1093/pcp/pci239
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
This study, of how Ca2+ availability (intracellular, extracellular or linked to the membrane) influences the functionality of aquaporins of pepper (Capsicum annuum L.) plants grown under salinity stress, was carried out in plants treated with NaCl (50 mM), CaCl2 (10 mM), and CaCl2 (10 mM) + NaCl (50 mM). For this, water transport through the plasma membrane of isolated protoplasts, and the involvement of aquaporins and calcium (extracellular, intracellular and linked to the membrane) has been determined. After these treatments, it could be seen that the calcium concentration was reduced in the apoplast, in the cells and on the plasma membrane of roots of pepper plants grown under saline conditions; these concentrations were increased or restored when extra calcium was added to the nutrient solution. Protoplasts extracted from plants grown under Ca2+ starvation showed no aquaporin functionality. However, for the protoplasts to which calcium was added, an increase of aquaporin functionality of the plasma membrane was observed [osmotic water permeability (P-f) inhibition after Hg addition]. Interestingly, when verapamil (a Ca2+ channel blocker) was added, no functionality was observed, even when Ca2+ was added with verapamil. Therefore, calcium seems to be involved in plasma membrane aquaporin regulation via a chain of processes within the cell but not by alteration of the stability of the plasma membrane.
引用
收藏
页码:224 / 233
页数:10
相关论文
共 65 条
[1]   Phosphorylation of plasma membrane aquaporin regulates temperature-dependent opening of tulip petals [J].
Azad, AK ;
Sawa, Y ;
Ishikawa, T ;
Shibata, H .
PLANT AND CELL PHYSIOLOGY, 2004, 45 (05) :608-617
[2]   EFFECTS OF SALINITY ON WATER TRANSPORT OF EXCISED MAIZE (ZEA-MAYS L) ROOTS [J].
AZAIZEH, H ;
STEUDLE, E .
PLANT PHYSIOLOGY, 1991, 97 (03) :1136-1145
[3]   Plant aquaporins [J].
Baiges, I ;
Schäffner, AR ;
Affenzeller, MJ ;
Mas, A .
PHYSIOLOGIA PLANTARUM, 2002, 115 (02) :175-182
[4]   Functional reconstitution and characterization of AqpZ, the E-coli water channel protein [J].
Borgnia, MJ ;
Kozono, D ;
Calamita, G ;
Maloney, PC ;
Agre, P .
JOURNAL OF MOLECULAR BIOLOGY, 1999, 291 (05) :1169-1179
[5]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[6]   CALCIUM REGULATION IN PLANT-CELLS AND ITS ROLE IN SIGNALING [J].
BUSH, DS .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1995, 46 :95-122
[7]   Does calcium determine water uptake under saline conditions in pepper plants, or is it water flux which determines calcium uptake? [J].
Cabañero, FJ ;
Martínez, V ;
Carvajal, M .
PLANT SCIENCE, 2004, 166 (02) :443-450
[8]   Does calcium ameliorate the negative effect of NaCl on melon root water transport by regulating aquaporin activity? [J].
Carvajal, M ;
Cerdá, A ;
Martínez, V .
NEW PHYTOLOGIST, 2000, 145 (03) :439-447
[9]   Physiological function of water channels as affected by salinity in roots of paprika pepper [J].
Carvajal, M ;
Martínez, V ;
Alcaraz, CF .
PHYSIOLOGIA PLANTARUM, 1999, 105 (01) :95-101
[10]  
Carvajal M, 1996, PLANTA, V199, P372, DOI 10.1007/BF00195729