Finding and Comparing Syntenic Regions among Arabidopsis and the Outgroups Papaya, Poplar, and Grape: CoGe with Rosids

被引:309
作者
Lyons, Eric [1 ]
Pedersen, Brent [1 ]
Kane, Josh [1 ]
Alam, Maqsudul [2 ]
Ming, Ray [3 ]
Tang, Haibao [4 ]
Wang, Xiyin [4 ]
Bowers, John [4 ]
Paterson, Andrew [4 ]
Lisch, Damon [1 ]
Freeling, Michael [1 ]
机构
[1] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA
[2] Univ Hawaii, Dept Microbiol, Honolulu, HI 96822 USA
[3] Univ Illinois, Dept Plant Biol, Urbana, IL 61801 USA
[4] Univ Georgia, Ctr Appl Genet Technol, Athens, GA 30602 USA
基金
美国国家科学基金会;
关键词
D O I
10.1104/pp.108.124867
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
In addition to the genomes of Arabidopsis (Arabidopsis thaliana) and poplar (Populus trichocarpa), two near-complete rosid genome sequences, grape (Vitis vinifera) and papaya (Carica papaya), have been recently released. The phylogenetic relationship among these four genomes and the placement of their three independent, fractionated tetraploidies sum to a powerful comparative genomic system. CoGe, a platform of multiple whole or near-complete genome sequences, provides an integrative Web-based system to find and align syntenic chromosomal regions and visualize the output in an intuitive and interactive manner. CoGe has been customized to specifically support comparisons among the rosids. Crucial facts and definitions are presented to clearly describe the sorts of biological questions that might be answered in part using CoGe, including patterns of DNA conservation, accuracy of annotation, transposability of individual genes, subfunctionalization and/ or fractionation of syntenic gene sets, and conserved noncoding sequence content. This precis of an online tutorial, CoGe with Rosids (http://tinyurl.com/4a23pk), presents sample results graphically.
引用
收藏
页码:1772 / 1781
页数:10
相关论文
共 54 条
[1]   Polyploidy and genome evolution in plants [J].
Adams, KL ;
Wendel, JF .
CURRENT OPINION IN PLANT BIOLOGY, 2005, 8 (02) :135-141
[2]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[3]   Identification and characterization of nucleotide-binding site-Leucine-rich repeat genes in the model plant Medicago truncatul [J].
Ameline-Torregrosa, Carine ;
Wang, Bing-Bing ;
O'Bleness, Majesta S. ;
Deshpande, Shweta ;
Zhu, Hongyan ;
Roe, Bruce ;
Young, Nevin D. ;
Cannon, Steven B. .
PLANT PHYSIOLOGY, 2008, 146 (01) :5-21
[4]   Dosage balance in gene regulation: biological implications [J].
Birchler, JA ;
Riddle, NC ;
Auger, DL ;
Veitia, RA .
TRENDS IN GENETICS, 2005, 21 (04) :219-226
[5]   Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution [J].
Blanc, G ;
Wolfe, KH .
PLANT CELL, 2004, 16 (07) :1679-1691
[6]   Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events [J].
Bowers, JE ;
Chapman, BA ;
Rong, JK ;
Paterson, AH .
NATURE, 2003, 422 (6930) :433-438
[7]   LAGAN and Multi-LAGAN: Efficient tools for large-scale multiple alignment of genomic DNA [J].
Brudno, M ;
Do, CB ;
Cooper, GM ;
Kim, MF ;
Davydov, E ;
Green, ED ;
Sidow, A ;
Batzoglou, S .
GENOME RESEARCH, 2003, 13 (04) :721-731
[8]   Explosive radiation of malpighiales supports a mid-Cretaceous origin of modern tropical rain forests [J].
Davis, CC ;
Webb, CO ;
Wurdack, KJ ;
Jaramillo, CA ;
Donoghue, MJ .
AMERICAN NATURALIST, 2005, 165 (03) :E36-E65
[9]   Expression pattern shifts following duplication indicative of subfunctionalization and neofunctionalization in regulatory genes of Arabidopsis [J].
Duarte, JM ;
Cui, LY ;
Wall, PK ;
Zhang, Q ;
Zhang, XH ;
Leebens-Mack, J ;
Ma, H ;
Altman, N ;
dePamphilis, CW .
MOLECULAR BIOLOGY AND EVOLUTION, 2006, 23 (02) :469-478
[10]  
Force A, 1999, GENETICS, V151, P1531