Machine learning for crystal identification and discovery

被引:81
作者
Spellings, Matthew
Glotzer, Sharon C. [1 ]
机构
[1] Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48109 USA
关键词
machine learning; data science; computational; self-assembly; crystal; QUASI-CRYSTALLINE; PHASE; ORDER;
D O I
10.1002/aic.16157
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
As computers get faster, researchersnot hardware or algorithmsbecome the bottleneck in scientific discovery. Computational study of colloidal self-assembly is one area that is keenly affected: even after computers generate massive amounts of raw data, performing an exhaustive search to determine what (if any) ordered structures occur in a large parameter space of many simulations can be excruciating. We demonstrate how machine learning can be applied to discover interesting areas of parameter space in colloidal self-assembly. We create numerical fingerprintsinspired by bond orientational order diagramsof structures found in self-assembly studies and use these descriptors to both find interesting regions in a phase diagram and identify characteristic local environments in simulations in an automated manner for simple and complex crystal structures. Utilizing these methods allows analysis to keep up with the data generation ability of modern high-throughput computing environments. (c) 2018 American Institute of Chemical Engineers AIChE J, 64: 2198-2206, 2018
引用
收藏
页码:2198 / 2206
页数:9
相关论文
共 39 条
[1]   Novel ground-state crystals with controlled vacancy concentrations: From kagome to honeycomb to stripes [J].
Batten, Robert D. ;
Huse, David A. ;
Stillinger, Frank H. ;
Torquato, Salvatore .
SOFT MATTER, 2011, 7 (13) :6194-6204
[2]   Combining Mixture Components for Clustering [J].
Baudry, Jean-Patrick ;
Raftery, Adrian E. ;
Celeux, Gilles ;
Lo, Kenneth ;
Gottardo, Raphael .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2010, 19 (02) :332-353
[3]   Two-Step Melting in Two Dimensions: First-Order Liquid-Hexatic Transition [J].
Bernard, Etienne P. ;
Krauth, Werner .
PHYSICAL REVIEW LETTERS, 2011, 107 (15)
[4]   A new order parameter for tetrahedral configurations [J].
Chau, PL ;
Hardwick, AJ .
MOLECULAR PHYSICS, 1998, 93 (03) :511-518
[5]   A simulation study to compare robust clustering methods based on mixtures [J].
Coretto, Pietro ;
Hennig, Christian .
ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2010, 4 (2-3) :111-135
[6]   Structural phases of colloids interacting via a flat-well potential [J].
Costa Campos, L. Q. ;
de Souza Silva, C. C. ;
Apolinario, S. W. S. .
PHYSICAL REVIEW E, 2012, 86 (05)
[7]   Identifying Structural Flow Defects in Disordered Solids Using Machine-Learning Methods [J].
Cubuk, E. D. ;
Schoenholz, S. S. ;
Rieser, J. M. ;
Malone, B. D. ;
Rottler, J. ;
Durian, D. J. ;
Kaxiras, E. ;
Liu, A. J. .
PHYSICAL REVIEW LETTERS, 2015, 114 (10)
[8]   Predictive Self-Assembly of Polyhedra into Complex Structures [J].
Damasceno, Pablo F. ;
Engel, Michael ;
Glotzer, Sharon C. .
SCIENCE, 2012, 337 (6093) :453-457
[9]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[10]   Machine-learning approach for local classification of crystalline structures in multiphase systems [J].
Dietz, C. ;
Kretz, T. ;
Thoma, M. H. .
PHYSICAL REVIEW E, 2017, 96 (01)