A versatile source to produce high-intensity, pulsed supersonic radical beams for crossed-beam experiments:: The cyanogen radical CN(X2Σ+) as a case study

被引:47
作者
Kaiser, RI
Ting, JW
Huang, LCL
Balucani, N
Asvany, O
Lee, YT
Chan, H
Stranges, D
Gee, D
机构
[1] Inst Atom & Mol Sci, Taipei 107, Taiwan
[2] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[3] Tech Univ Chemnitz Zwickau, Dept Phys, D-09107 Chemnitz, Germany
关键词
D O I
10.1063/1.1150050
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
In our laboratory a novel and convenient technique has been developed to generate an intense pulsed cyano radical beam to be employed in crossed molecular beam experiments investigating the chemical dynamics of bimolecular reactions. CN radicals in their ground electronic state (2)Sigma(+) are produced in situ via laser ablation of a graphite rod at 266 nm and 30 mJ output power and subsequent reaction of the ablated species with molecular nitrogen, which acts also as a seeding gas. A chopper wheel located after the ablation source and before the collision center selects a 9 mu s segment of the beam. By changing the delay time between the pulsed valve and the choppper wheel, we can select a section of the pulsed CN(X(2)Sigma(+)) beam choosing different velocities in the range of 900-1920 ms(-1) with speed ratios from 4 to 8. A high-stability analog oscillator drives the motor of the chopper wheel (deviations less than 100 ppm of the period), and a high-precision reversible motor driver is interfaced to the rotating carbon rod. Both units are essential to ensure a stable cyanogen radical beam with velocity fluctuations of less than 3%. The high intensity of the pulsed supersonic CN beam of about 2-3 x 10(11) cm(-3) is three orders of magnitude higher than supersonic cyano radical beams employed in previous crossed molecular beams experiments. This data together with the tunable velocity range clearly demonstrate the unique power of our newly developed in situ production of a supersonic CN radical beam. This versatile concept is extendible to generate other intense, pulsed supersonic beams of highly unstable diatomic radicals, among them BC, BN, BO, BS, CS, SiC, SiN, SiO, and SiS, which are expected to play a crucial role in interstellar chemistry, chemistry in the solar system, and/or combustion processes. (C) 1999 American Institute of Physics. [S0034-6748(99)04911-4].
引用
收藏
页码:4185 / 4191
页数:7
相关论文
共 32 条
[1]  
Abramovich R. A., 1980, REACTIVE INTERMEDIAT
[2]  
Almond M. J., 1990, SHORT LIVED MOL
[3]  
BALUCANI N, UNPUB
[4]   Reactive scattering of CN+D-2: The stereodynamics [J].
Che, DC ;
Liu, KP .
CHEMICAL PHYSICS, 1996, 207 (2-3) :367-378
[5]   THE FORMATION OF CYANOPOLYYNE MOLECULES IN IRC+10216 [J].
CHERCHNEFF, I ;
GLASSGOLD, AE ;
MAMON, GA .
ASTROPHYSICAL JOURNAL, 1993, 410 (01) :188-201
[6]   THE FORMATION OF CARBON-CHAIN MOLECULES IN IRC+10216 [J].
CHERCHNEFF, I ;
GLASSGOLD, AE .
ASTROPHYSICAL JOURNAL, 1993, 419 (01) :L41-L44
[7]  
CHIL DC, 1995, CHEM PHYS LETT, V243, P290
[8]   Chemical evolution on Titan: Comparisons to the prebiotic earth [J].
Clarke, DW ;
Ferris, JP .
ORIGINS OF LIFE AND EVOLUTION OF BIOSPHERES, 1997, 27 (1-3) :225-248
[9]   PHOTODISSOCIATION OF CYANOACETYLENE - APPLICATION TO THE ATMOSPHERIC CHEMISTRY OF TITAN [J].
CLARKE, DW ;
FERRIS, JP .
ICARUS, 1995, 115 (01) :119-125
[10]   Detailed chemical modeling of the circumstellar envelopes of carbon stars: Application to IRC+10216 [J].
Doty, SD ;
Leung, CM .
ASTROPHYSICAL JOURNAL, 1998, 502 (02) :898-908