Identification of a potassium channel site that interacts with G protein βγ subunits to mediate agonist-induced signaling

被引:103
作者
He, C [1 ]
Zhang, HL [1 ]
Mirshahi, T [1 ]
Logothetis, DE [1 ]
机构
[1] CUNY Mt Sinai Sch Med, Dept Physiol & Biophys, New York, NY 10029 USA
关键词
D O I
10.1074/jbc.274.18.12517
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Activation of heterotrimeric GTP-binding (G) proteins by their coupled receptors, causes dissociation of the G protein alpha and beta gamma subunits, G(beta gamma) Subunits interact directly with G protein-gated inwardly rectifying K+ (GIRK) channels to stimulate their activity. In addition, free G(beta gamma) subunits, resulting from agonist-independent dissociation of G protein subunits, can account for a major component of the basal channel activity. Using a series of chimeric constructs between GIRK4 and a G(beta gamma)-insensitive K+ channel, IRK1, we have identified a critical site of interaction of GIRK with G(beta gamma). Mutation of Leu(339) to Glu within this site impaired agonist-induced sensitivity and decreased binding to G(beta gamma), without removing the G(beta gamma) contribution to basal currents. Mutation of the corresponding residue in GIRK1 (Leu(333)) resulted in a similar phenotype, Both the GIRK1 and GIRK4 subunits contributed equally to the agonist-induced sensitivity of the heteromultimeric channel. Thus, we have identified a channel site that interacts specifically with G(beta gamma) subunits released through receptor stimulation.
引用
收藏
页码:12517 / 12524
页数:8
相关论文
共 32 条
[1]   A recombinant inwardly rectifying potassium channel coupled to GTP-binding proteins [J].
Chan, KW ;
Langan, MN ;
Sui, JL ;
Kozak, JA ;
Pabon, A ;
Ladias, JAA ;
Logothetis, DE .
JOURNAL OF GENERAL PHYSIOLOGY, 1996, 107 (03) :381-397
[2]   Control of channel activity through a unique amino acid residue of a G protein-gated inwardly rectifying K+ channel subunit [J].
Chan, KW ;
Sui, JL ;
Vivaudou, M ;
Logothetis, DE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (24) :14193-14198
[3]   Inhibition of an inward rectifier potassium channel (Kim2.3) by G-protein beta gamma subunits [J].
Cohen, NA ;
Sha, Q ;
Makhina, EN ;
Lopatin, AN ;
Linder, ME ;
Snyder, SH ;
Nichols, CG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (50) :32301-32305
[4]   ATRIAL G-PROTEIN-ACTIVATED K+-CHANNEL - EXPRESSION CLONING AND MOLECULAR-PROPERTIES [J].
DASCAL, N ;
SCHREIBMAYER, W ;
LIM, NF ;
WANG, WZ ;
CHAVKIN, C ;
DIMAGNO, L ;
LABARCA, C ;
KIEFFER, BL ;
GAVERIAUXRUFF, C ;
TROLLINGER, D ;
LESTER, HA ;
DAVIDSON, N .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (21) :10235-10239
[5]   The structure of the potassium channel:: Molecular basis of K+ conduction and selectivity [J].
Doyle, DA ;
Cabral, JM ;
Pfuetzner, RA ;
Kuo, AL ;
Gulbis, JM ;
Cohen, SL ;
Chait, BT ;
MacKinnon, R .
SCIENCE, 1998, 280 (5360) :69-77
[6]   Crystal structure at 2.4 angstrom resolution of the complex of transducin beta gamma and its regulator, phosducin [J].
Gaudet, R ;
Bohm, A ;
Sigler, PB .
CELL, 1996, 87 (03) :577-588
[7]   IMPROVED PATCH-CLAMP TECHNIQUES FOR HIGH-RESOLUTION CURRENT RECORDING FROM CELLS AND CELL-FREE MEMBRANE PATCHES [J].
HAMILL, OP ;
MARTY, A ;
NEHER, E ;
SAKMANN, B ;
SIGWORTH, FJ .
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 1981, 391 (02) :85-100
[8]   Cloning of a Xenopus laevis inwardly rectifying K+ channel subunit that permits GIRK1 expression of I-KACh currents in oocytes [J].
Hedin, KE ;
Lim, NF ;
Clapham, DE .
NEURON, 1996, 16 (02) :423-429
[9]   ENGINEERING HYBRID GENES WITHOUT THE USE OF RESTRICTION ENZYMES - GENE-SPLICING BY OVERLAP EXTENSION [J].
HORTON, RM ;
HUNT, HD ;
HO, SN ;
PULLEN, JK ;
PEASE, LR .
GENE, 1989, 77 (01) :61-68
[10]   Binding of the G protein beta gamma subunit to multiple regions of G protein-gated inward-rectifying K+ channels [J].
Huang, CL ;
Jan, YN ;
Jan, LY .
FEBS LETTERS, 1997, 405 (03) :291-298