Parameter estimation and optimal experimental design

被引:102
作者
Banga, Julio R. [1 ]
Balsa-Canto, Eva [1 ]
机构
[1] IIM CSIC, Spanish Council Sci Res, Vigo 36208, Spain
来源
ESSAYS IN BIOCHEMISTRY: SYSTEMS BIOLOGY, VOL 45 | 2008年 / 45卷
关键词
D O I
10.1042/BSE0450195
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mathematical models are central in systems biology and provide new ways to Understand the function of biological systems, helping in the generation of novel and testable hypotheses, and supporting a rational framework for possible ways of intervention, like in e.g. genetic engineering, drug development or treatment of diseases. Since the amount and quality of experimental 'omics' data continue to increase rapidly, there is great need for methods for proper model building, which can handle this complexity. In the present chapter we review two key steps of the model building process, namely parameter estimation (model calibration) and optimal experimental design. Parameter estimation aims to find the unknown parameters of the model which give the best fit to a set of experimental data. Optimal experimental design aims to devise the dynamic experiments which provide the maximum information content for subsequent non-linear model identification, estimation and/or discrimination. We place emphasis on the need for robust global optimization methods for proper solution of these problems, and we present a motivating example considering a cell signalling model.
引用
收藏
页码:195 / 209
页数:15
相关论文
共 41 条
[1]   Global identifiability of nonlinear models of biological systems [J].
Audoly, S ;
Bellu, G ;
D'Angiò, L ;
Saccomani, MP ;
Cobelli, C .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2001, 48 (01) :55-65
[2]  
BALSACANTO E, 2006, UNDERSTANDING EXPLOI, P103
[3]   Computation of optimal identification experiments for nonlinear dynamic process models: a stochastic global optimization approach [J].
Banga, JR ;
Versyck, KJ ;
Van Impe, JF .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2002, 41 (10) :2425-2430
[4]   The nature of systems biology [J].
Bruggeman, Frank J. ;
Westerhoff, Hans V. .
TRENDS IN MICROBIOLOGY, 2007, 15 (01) :45-50
[5]   Optimal experimental design in an epidermal growth factor receptor signalling and down-regulation model [J].
Casey, F. P. ;
Baird, D. ;
Feng, Q. ;
Gutenkunst, R. N. ;
Waterfall, J. J. ;
Myers, C. R. ;
Brown, K. S. ;
Cerione, R. A. ;
Sethna, J. P. .
IET SYSTEMS BIOLOGY, 2007, 1 (03) :190-202
[6]   Experimental design in systems biology, based on parameter sensitivity analysis using a Monte Carlo method:: A case study for the TNFα-mediated NF-κB signal transduction pathway [J].
Cho, KH ;
Shin, SY ;
Kolch, W ;
Wolkenhauer, O .
SIMULATION-TRANSACTIONS OF THE SOCIETY FOR MODELING AND SIMULATION INTERNATIONAL, 2003, 79 (12) :726-739
[7]   Reverse engineering of biological complexity [J].
Csete, ME ;
Doyle, JC .
SCIENCE, 2002, 295 (5560) :1664-1669
[8]   Grid Cellware: the first grid-enabled tool for modelling and simulating cellular processes [J].
Dhar, PK ;
Meng, TC ;
Somani, S ;
Ye, L ;
Sakharkar, K ;
Krishnan, A ;
Ridwan, ABM ;
Wah, SHK ;
Chitre, M ;
Hao, Z .
BIOINFORMATICS, 2005, 21 (07) :1284-1287
[9]   Systems interface biology [J].
Doyle, Francis J., III ;
Stelling, Joerg .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2006, 3 (10) :603-616
[10]   Scatter search for chemical and bio-process optimization [J].
Egea, Jose A. ;
Rodriguez-Fernandez, Maria ;
Banga, Julio R. ;
Marti, Rafael .
JOURNAL OF GLOBAL OPTIMIZATION, 2007, 37 (03) :481-503