Targeting of DMinC/MinD and DMinC/DicB complexes to septal rings in Escherichia coli suggests a multistep mechanism for MinC-mediated destruction of nascent FtsZ rings

被引:80
作者
Johnson, JE [1 ]
Lackner, LL [1 ]
de Boer, PAJ [1 ]
机构
[1] Case Western Reserve Univ, Sch Med, Dept Mol Biol & Microbiol, Cleveland, OH 44106 USA
关键词
D O I
10.1128/JB.184.11.2951-2962.2002
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The MinC protein is an important determinant of septal ring positioning in Escherichia coli. The N-terminal domain ((Z)MinC) suppresses septal ring formation by interfering with FtsZ polymerization, whereas the C-terminal domain ((D)MinC) is required for dimerization as well as for interaction with the MinD protein. MinD oscillates between the membrane of both cell halves in a MinE-dependent fashion. MinC oscillates along with MinD such that the time-integrated concentration of (Z)MinC at the membrane is minimal, and hence the stability of FtsZ polymers is maximal, at the cell center. MinC is cytoplasmic and fails to block FtsZ assembly in the absence of MinD, indicating that recruitment of MinC by MinD to the membrane enhances (Z)MinC function. Here, we present evidence that the binding of (D)MinC to MinD endows the MinC/MinD complex with a more specific affinity for a septal ring-associated target in vivo. Thus, MinD does not merely attract MinC to the membrane but also aids MinC in specifically binding to, or in close proximity to, the substrate of its (Z)MinC domain. MinC-mediated division inhibition can also be activated in a MinD-independent fashion by the DicB protein of cryptic prophage Kim. DicB shows little homology to MinD, and how it stimulates MinC function has been unclear. Similar to the results obtained with MinD, we find that DicB interacts directly with (D)MinC, that the (D)MinC/DicB complex has a high affinity for some septal ring target(s), and that MinC/DicB interferes with the assembly and/or integrity of FtsZ rings in vivo. The results suggest a multistep mechanism for the activation of MinC-mediated division inhibition by either MinD or DicB and further expand the number of properties that can be ascribed to the Min proteins.
引用
收藏
页码:2951 / 2962
页数:12
相关论文
共 55 条
[1]   FtsZ-spirals and -arcs determine the shape of the invaginating septa in some mutants of Escherichia coli [J].
Addinall, SG ;
Lutkenhaus, J .
MOLECULAR MICROBIOLOGY, 1996, 22 (02) :231-237
[2]   FtsZ ring formation in fts mutants [J].
Addinall, SG ;
Bi, EF ;
Lutkenhaus, J .
JOURNAL OF BACTERIOLOGY, 1996, 178 (13) :3877-3884
[3]  
[Anonymous], 1991, Methods Enzymol, V194, P1
[4]   CELL-DIVISION INHIBITION GENE DICB IS REGULATED BY A LOCUS SIMILAR TO LAMBDOID BACTERIOPHAGE IMMUNITY LOCI [J].
BEJAR, S ;
BOUCHE, F ;
BOUCHE, JP .
MOLECULAR & GENERAL GENETICS, 1988, 212 (01) :11-19
[5]   CELL-DIVISION INHIBITORS SULA AND MINCD PREVENT FORMATION OF THE FTSZ RING [J].
BI, E ;
LUTKENHAUS, J .
JOURNAL OF BACTERIOLOGY, 1993, 175 (04) :1118-1125
[6]   FTSZ RING STRUCTURE ASSOCIATED WITH DIVISION IN ESCHERICHIA-COLI [J].
BI, E ;
LUTKENHAUS, J .
NATURE, 1991, 354 (6349) :161-164
[7]   IDENTIFICATION AND SEQUENCE OF GENE DICB - TRANSLATION OF THE DIVISION INHIBITOR FROM AN IN-PHASE INTERNAL START [J].
CAM, K ;
BEJAR, S ;
GIL, D ;
BOUCHE, JP .
NUCLEIC ACIDS RESEARCH, 1988, 16 (14) :6327-6338
[8]   FtsQ, FtsL and FtsI require FtsK, but not FtsN, for co-localization with FtsZ during Escherichia coli cell division [J].
Chen, JC ;
Beckwith, J .
MOLECULAR MICROBIOLOGY, 2001, 42 (02) :395-413
[9]   Crystal structure of the bacterial cell division inhibitor MinC [J].
Cordell, SC ;
Anderson, RE ;
Löwe, J .
EMBO JOURNAL, 2001, 20 (10) :2454-2461
[10]   A DIVISION INHIBITOR AND A TOPOLOGICAL SPECIFICITY FACTOR CODED FOR BY THE MINICELL LOCUS DETERMINE PROPER PLACEMENT OF THE DIVISION SEPTUM IN ESCHERICHIA-COLI [J].
DEBOER, PAJ ;
CROSSLEY, RE ;
ROTHFIELD, LI .
CELL, 1989, 56 (04) :641-649