Down-Regulation of Neurocan Expression in Reactive Astrocytes Promotes Axonal Regeneration and Facilitates the Neurorestorative Effects of Bone Marrow Stromal Cells in the Ischemic Rat Brain

被引:145
作者
Shen, Li Hong [1 ]
Li, Yi [1 ]
Gao, Qi [1 ]
Savant-Bhonsale, Smita [2 ]
Chopp, Michael [1 ,3 ]
机构
[1] Henry Ford Hosp, Dept Neurol, Detroit, MI 48202 USA
[2] Theradigm Inc, Baltimore, MD USA
[3] Oakland Univ, Dept Phys, Rochester, MI USA
关键词
bone marrow stromal cells; stroke; axonal regeneration; neurocan; reactive astrocytes;
D O I
10.1002/glia.20722
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The glial sear, a primarily astrocytic structure bordering the infarct tissue inhibits axonal regeneration after stroke. Neurocan, an axonal extension inhibitory molecule, is upregulated in the scar region after stroke. Bone marrow stromal cells (BMSCs) reduce the thickness of glial sear wall and facilitate axonal remodeling in the ischemic boundary zone. To further clarify the role of BMSCs in axonal regeneration and its underlying mechanism, the current study focused on the effect of BMSCs on neurocan expression in the ischemic brain. Thirty-one adult male Wistar rats were subjected to 2 h of middle cerebral artery occlusion followed by an injection of 3 X 10(6) rat BMSCs (n = 16) or phosphate-buffered saline (n = 15) into the tail vein 24 h later. Animals were sacrificed at 8 days after stroke. Immunostaining analysis showed that reactive astrocytes were the primary source of neurocan, and BMSC-treated animals had significantly lower neurocan and higher growth associated protein 43 expression in the penumbral region compared with control rats, which was confirmed by Western blot analysis of the brain tissue. To further investigate the effects of BMSCs on astrocyte neurocan expression, single reactive astrocytes were collected from the ischemic boundary zone using laser capture microdissection. Neurocan gene expression was significantly down-regulated in rats receiving BMSC transplantation (n = 4/group). Primary cultured astrocytes showed similar alterations; BMSC coculture during reoxygenation abolished the up-regulation of neurocan gene in astrocytes undergoing oxygen-glucose deprivation (n = 3/group). Our data suggest that BMSCs promote axonal regeneration by reducing neurocan expression in peri-infarct astrocytes. (C) 2008 Wiley-Liss, Inc.
引用
收藏
页码:1747 / 1754
页数:8
相关论文
共 51 条
[1]  
Asher RA, 2000, J NEUROSCI, V20, P2427
[2]  
BENOWITZ LI, 1988, J NEUROSCI, V8, P339
[3]  
BOVOLENTA P, 1992, PROG BRAIN RES, V94, P367
[4]   Mesenchymal stem cells as trophic mediators [J].
Caplan, Arnold I. ;
Dennis, James E. .
JOURNAL OF CELLULAR BIOCHEMISTRY, 2006, 98 (05) :1076-1084
[5]   THE EFFECT OF HYPOTHERMIA ON TRANSIENT MIDDLE CEREBRAL-ARTERY OCCLUSION IN THE RAT [J].
CHEN, H ;
CHOPP, M ;
ZHANG, ZG ;
GARCIA, JH .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 1992, 12 (04) :621-628
[6]   Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat [J].
Chen, JL ;
Li, Y ;
Katakowski, M ;
Chen, XG ;
Wang, L ;
Lu, DY ;
Lu, M ;
Gautam, SC ;
Chopp, M .
JOURNAL OF NEUROSCIENCE RESEARCH, 2003, 73 (06) :778-786
[7]   Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats [J].
Chen, JL ;
Li, Y ;
Wang, L ;
Zhang, ZG ;
Lu, DY ;
Lu, M ;
Chopp, M .
STROKE, 2001, 32 (04) :1005-1011
[8]   Ischemic rat brain extracts induce human marrow stromal cell growth factor production [J].
Chen, XG ;
Li, Y ;
Wang, L ;
Katakowski, M ;
Zhang, LJ ;
Chen, JL ;
Xu, YX ;
Gautam, SC ;
Chopp, M .
NEUROPATHOLOGY, 2002, 22 (04) :275-279
[9]   Treatment of neural injury with marrow stromal cells [J].
Chopp, M ;
Li, Y .
LANCET NEUROLOGY, 2002, 1 (02) :92-100
[10]   Regeneration of adult axons in white matter tracts of the central nervous system [J].
Davies, SJA ;
Fitch, MT ;
Memberg, SP ;
Hall, AK ;
Raisman, G ;
Silver, J .
NATURE, 1997, 390 (6661) :680-683