Proteasome active sites allosterically regulate each other, suggesting a cyclical bite-chew mechanism for protein breakdown

被引:229
作者
Kisselev, AF [1 ]
Akopian, TN [1 ]
Castillo, V [1 ]
Goldberg, AL [1 ]
机构
[1] Harvard Univ, Sch Med, Dept Cell Biol, Boston, MA 02115 USA
关键词
D O I
10.1016/S1097-2765(00)80341-X
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In eukaryotes, the 20S proteasome contains two chymotrypsin-like, two trypsin-like, and two active sites shown here to have caspase-like specificity. We report that certain sites allosterically regulate each other's activities. Substrates of a chymotrypsin-like site stimulate dramatically the caspase-like activity and also activate the other chymotrypsin-like site. Moreover, substrates of the caspase-like sites inhibit allosterically the chymotrypsin-like activity (the rate-limiting one in protein breakdown) and thus can reduce the degradation of proteins by 26S proteasomes. These allosteric effects suggest an ordered, cyclical mechanism for protein degradation. We propose that due chymotrypsin-like site initially cleaves ("bites") the polypeptide, thereby stimulating the caspase-like sites. Their activation accelerates further cleavage ("chewing") of the fragments, while the chymotrypsin-like activity is temporarily inhibited. When further caspase-like cleavages are impossible, the chymotryptic site is reactivated and the cycle repeated.
引用
收藏
页码:395 / 402
页数:8
相关论文
共 34 条
[1]   Processive degradation of proteins and other catalytic properties of the proteasome from Thermoplasma acidophilum [J].
Akopian, TN ;
Kisselev, AF ;
Goldberg, AL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (03) :1791-1798
[2]   Identification of the yeast 20S proteasome catalytic centers and subunit interactions required for active-site formation [J].
Arendt, CS ;
Hochstrasser, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (14) :7156-7161
[3]  
ARRIBAS J, 1990, J BIOL CHEM, V265, P13969
[4]   The proteasome:: Paradigm of a self-compartmentalizing protease [J].
Baumeister, W ;
Walz, J ;
Zühl, F ;
Seemuller, E .
CELL, 1998, 92 (03) :367-380
[5]  
Beninga J, 1998, UBIQUITIN BIOL CELL, P191
[6]   Covalent modification of the active site threonine of proteasomal beta subunits and the Escherichia coli homolog HslV by a new class of inhibitors [J].
Bogyo, M ;
McMaster, JS ;
Gaczynska, M ;
Tortorella, D ;
Goldberg, AL ;
Ploegh, H .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (13) :6629-6634
[7]   A 3,4-DICHLOROISOCOUMARIN-RESISTANT COMPONENT OF THE MULTICATALYTIC PROTEINASE COMPLEX [J].
CARDOZO, C ;
VINITSKY, A ;
HIDALGO, MC ;
MICHAUD, C ;
ORLOWSKI, M .
BIOCHEMISTRY, 1992, 31 (32) :7373-7380
[8]   Autocatalytic subunit processing couples active site formation in the 20S proteasome to completion of assembly [J].
Chen, P ;
Hochstrasser, M .
CELL, 1996, 86 (06) :961-972
[9]  
CHU-PING M, 1992, Journal of Biological Chemistry, V267, P10515
[10]   Structure and functions of the 20S and 26S proteasomes [J].
Coux, O ;
Tanaka, K ;
Goldberg, AL .
ANNUAL REVIEW OF BIOCHEMISTRY, 1996, 65 :801-847