A versatile polymeric waveguide technology is proposed for massively parallel optical interconnections. We developed a variety of low-loss high-thermal-stability polymeric materials and used them in the fabrication of complex point-to-point optical interconnections with controlled numerical aperture (NA) and geometry. Conventional mask photolithography as well as maskless adaptive laser-based techniques were used to produce at low cost various integrated optical devices and circuits on diverse rigid and flexible substrates. Practical applications include high-speed high-density massively-parallel on-chip, chip-to-chip, on-board, board-to-board, and backplane interconnections.