Rheological characterization of a charged cationic hydrogel network across the gelation boundary

被引:55
作者
Sahiner, N [1 ]
Singh, M [1 ]
De Kee, D [1 ]
John, VT [1 ]
McPherson, GL [1 ]
机构
[1] Tulane Univ, Dept Chem, New Orleans, LA 70118 USA
基金
美国国家航空航天局; 美国国家科学基金会;
关键词
rheological characterization; charged hydrogel; gelation;
D O I
10.1016/j.polymer.2005.10.129
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The in situ rheological behavior across the gelation threshold has been investigated for an affine network of a completely charged cationic monomer (3-acrylamidopropyl)-trimethyl ammonium chloride (APTMAC1) when it is crosslinked with a neutral crosslinker (N,N'-methylenebisacrylamide) to form a fully charged novel cationic hydrogel. The elastic moduli (G) near the gel point (during the crosslinking or 'curing' process) show a power law dependence of the form G'(t)=epsilon(z) where epsilon=((t-t(c))/t(c)) is the distance from the gel point (t(c)). The critical exponent, z, for the hydrogel series investigated is estimated to be 1.5, slightly lower than the predictions based on percolation theory (z similar to 1.7-1.9). From the equilibrium (after the curing process) rheological measurements of a series of samples, it is inferred that there is a critical crosslinker mole percent (X,) with respect to the monomer concentration, required to form a well-defined three-dimensional network with a solid-like behavior. The value of this X-c is found to be between 0.5 and 1%. The theoretically predicted value of X-c using the percolation theory (for the percolation of crosslinks, G(0)(X) proportional to [vertical bar X-X-c vertical bar/X-c](z)) and the exponent estimated from the in situ measurements (z = 1.5), is X-c similar to 0.6, which is in good agreement with the experiments. The results may have applicability in translating from bulk systems to the nanoscale in hydrogel design. (c) 2005 Elsevier Ltd. All tights reserved.
引用
收藏
页码:1124 / 1131
页数:8
相关论文
共 44 条
[1]   MECHANICAL MEASUREMENTS IN THE REACTION BATH DURING THE POLYCONDENSATION REACTION, NEAR THE GELATION THRESHOLD [J].
ADAM, M ;
DELSANTI, M ;
DURAND, D .
MACROMOLECULES, 1985, 18 (11) :2285-2290
[2]   TIME CURE SUPERPOSITION DURING CROSS-LINKING [J].
ADOLF, D ;
MARTIN, JE .
MACROMOLECULES, 1990, 23 (15) :3700-3704
[3]   EVOLUTION OF STRUCTURE AND VISCOELASTICITY IN AN EPOXY NEAR THE SOL-GEL TRANSITION [J].
ADOLF, D ;
MARTIN, JE ;
WILCOXON, JP .
MACROMOLECULES, 1990, 23 (02) :527-531
[4]   EFFECT OF INITIAL TOTAL MONOMER CONCENTRATION ON THE SWELLING BEHAVIOR OF CATIONIC ACRYLAMIDE-BASED HYDROGELS [J].
BAKER, JP ;
HONG, LH ;
BLANCH, HW ;
PRAUSNITZ, JM .
MACROMOLECULES, 1994, 27 (06) :1446-1454
[5]   Scaling of rheological properties of hydrogels from associating polymers [J].
Bromberg, L .
MACROMOLECULES, 1998, 31 (18) :6148-6156
[6]  
Carreau P.J., 1997, RHEOLOGY POLYM SYSTE
[7]   LINEAR VISCOELASTICITY AT THE GEL POINT OF A CROSS-LINKING PDMS WITH IMBALANCED STOICHIOMETRY [J].
CHAMBON, F ;
WINTER, HH .
JOURNAL OF RHEOLOGY, 1987, 31 (08) :683-697
[8]   RHEOLOGY OF MODEL POLYURETHANES AT THE GEL POINT [J].
CHAMBON, F ;
PETROVIC, ZS ;
MACKNIGHT, WJ ;
WINTER, HH .
MACROMOLECULES, 1986, 19 (08) :2146-2149
[9]   Bioerodible hydrogels based on 2-hydroxyethyl methacrylate: Synthesis and characterization [J].
Chiellini, F ;
Petrucci, F ;
Ranucci, E ;
Solaro, R .
JOURNAL OF APPLIED POLYMER SCIENCE, 2002, 85 (13) :2729-2741
[10]   Rheology and photo-cross-linking of thiol-ene polymers [J].
Chiou, BS ;
English, RJ ;
Khan, SA .
MACROMOLECULES, 1996, 29 (16) :5368-5374