Role of Bond Adaptability in the Passivation of Colloidal Quantum Dot Solids

被引:68
作者
Thon, Susanna M. [1 ]
Ip, Alexander H. [1 ]
Voznyy, Oleksandr [1 ]
Levina, Larissa [1 ]
Kemp, Kyle W. [1 ]
Carey, Graham H. [1 ]
Masala, Silvia [1 ,2 ]
Sargent, Edward H. [1 ]
机构
[1] Univ Toronto, Dept Elect & Comp Engn, Toronto, ON M5S 3G4, Canada
[2] King Abdullah Univ Sci & Technol, Solar & Photovolta Engn Res Ctr, Thuwal 239556900 4, Saudi Arabia
基金
加拿大自然科学与工程研究理事会;
关键词
colloidal quantum dots; photovoltaics; surface passivation; binding energy; DFT; PbS nanocrystals; BAND-LIKE TRANSPORT; LIGAND-EXCHANGE; PARTICLE-SIZE; SOLAR-CELLS; NANOCRYSTALS; RECOMBINATION; SUPPRESSION; DEPENDENCE; INTERFACE; GROWTH;
D O I
10.1021/nn4021983
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Colloidal quantum dot (COD) solids are attractive materials for photovoltaic devices due to their low-cost solution-phase processing, high absorption cross sections, and their band gap tunability via the quantum size effect. Recent advances in COD solar cell performance have relied on new surface passivation strategies. Specifically, cadmium cation passivation of surface chalcogen sites in PbS CQDs has been shown to contribute to lowered trap state densities and improved photovoltaic performance. Here we deploy a generalized solution-phase passivation strategy as a means to improving COD surface management. We connect the effects of the choice of metal cation on solution-phase surface passivation, film-phase trap density of states, minority carrier mobility, and photovoltaic power conversion efficiency. We show that trap passivation and midgap density of states determine photovoltaic device performance and are strongly influenced by the choice of metal cation. Supported by density functional theory simulations, we propose a model for the role of cations, a picture wherein metals offering the shallowest electron affinities and the greatest adaptability in surface bonding configurations eliminate both deep and shallow traps effectively even in submonolayer amounts. This work illustrates the importance of materials choice in designing a flexible passivation strategy for optimum COD device performance.
引用
收藏
页码:7680 / 7688
页数:9
相关论文
共 48 条
[1]   Soluble, Chloride-Terminated CdSe Nanocrystals: Ligand Exchange Monitored by 1H and 31P NMR Spectroscopy [J].
Anderson, Nicholas C. ;
Owen, Jonathan S. .
CHEMISTRY OF MATERIALS, 2013, 25 (01) :69-76
[2]   Controlled Alloying of the Core-Shell Interface in CdSe/CdS Quantum Dots for Suppression of Auger Recombination [J].
Bae, Wan Ki ;
Padilha, Lazaro A. ;
Park, Young-Shin ;
McDaniel, Hunter ;
Robel, Istvan ;
Pietryga, Jeffrey M. ;
Klimov, Victor I. .
ACS NANO, 2013, 7 (04) :3411-3419
[3]   Highly Effective Surface Passivation of PbSe Quantum Dots through Reaction with Molecular Chlorine [J].
Bae, Wan Ki ;
Joo, Jin ;
Padilha, Lazaro A. ;
Won, Jonghan ;
Lee, Doh C. ;
Lin, Qianglu ;
Koh, Weon-kyu ;
Luo, Hongmei ;
Klimov, Victor I. ;
Pietryga, Jeffrey M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (49) :20160-20168
[4]   Growth and properties of semiconductor core/shell nanocrystals with InAs cores [J].
Cao, YW ;
Banin, U .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (40) :9692-9702
[5]   Bandlike Transport in Strongly Coupled and Doped Quantum Dot Solids: A Route to High-Performance Thin-Film Electronics [J].
Choi, Ji-Hyuk ;
Fafarman, Aaron T. ;
Oh, Soong Ju ;
Ko, Dong-Kyun ;
Kim, David K. ;
Diroll, Benjamin T. ;
Muramoto, Shin ;
Gillen, J. Greg ;
Murray, Christopher B. ;
Kagan, Cherie R. .
NANO LETTERS, 2012, 12 (05) :2631-2638
[6]   Low Voltage, Hysteresis Free, and High Mobility Transistors from All-Inorganic Colloidal Nanocrystals [J].
Chung, Dae Sung ;
Lee, Jong-Soo ;
Huang, Jing ;
Nag, Angshuman ;
Ithurria, Sandrine ;
Talapin, Dmitri V. .
NANO LETTERS, 2012, 12 (04) :1813-1820
[7]   Controlled Chemical Doping of Semiconductor Nanocrystals Using Redox Buffers [J].
Engel, Jesse H. ;
Surendranath, Yogesh ;
Alivisatos, A. Paul .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (32) :13200-13203
[8]   Doping semiconductor nanocrystals [J].
Erwin, SC ;
Zu, LJ ;
Haftel, MI ;
Efros, AL ;
Kennedy, TA ;
Norris, DJ .
NATURE, 2005, 436 (7047) :91-94
[9]   Photoconductivity of PbSe Quantum-Dot Solids: Dependence on Ligand Anchor Group and Length [J].
Gao, Yunan ;
Aerts, Michiel ;
Sandeep, C. S. Suchand ;
Talgorn, Elise ;
Savenije, Tom J. ;
Kinge, Sachin ;
Siebbeles, Laurens D. A. ;
Houtepen, Arjan J. .
ACS NANO, 2012, 6 (11) :9606-9614
[10]   New Insights into the Complexities of Shell Growth and the Strong Influence of Particle Volume in Nonblinking "Giant" Core/Shell Nanocrystal Quantum Dots [J].
Ghosh, Yagnaseni ;
Mangum, Benjamin D. ;
Casson, Joanna L. ;
Williams, Darrick J. ;
Htoon, Han ;
Hollingsworth, Jennifer A. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (23) :9634-9643