Ranking tournaments

被引:116
作者
Alon, N [1 ]
机构
[1] Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Math & Comp Sci, IL-69978 Tel Aviv, Israel
[2] IAS, Princeton, NJ 08540 USA
关键词
tournament; feedback arc set problem;
D O I
10.1137/050623905
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A tournament is an oriented complete graph. The feedback arc set problem for tournaments is the optimization problem of determining the minimum possible number of edges of a given input tournament T whose reversal makes T acyclic. Ailon, Charikar, and Newman showed that this problem is NP-hard under randomized reductions. Here we show that it is in fact NP-hard. This settles a conjecture of Bang-Jensen and Thomassen.
引用
收藏
页码:137 / 142
页数:6
相关论文
共 8 条
[1]  
Ailon Nir, 2005, P 37 ANN ACM S THEOR, P684, DOI [10.1145/1060590.1060692, DOI 10.1145/1060590.1060692]
[2]   Approximating the cut-norm via Grothendieck's inequality [J].
Alon, N ;
Naor, A .
SIAM JOURNAL ON COMPUTING, 2006, 35 (04) :787-803
[3]   EIGENVALUES, GEOMETRIC EXPANDERS, SORTING IN ROUNDS, AND RAMSEY THEORY [J].
ALON, N .
COMBINATORICA, 1986, 6 (03) :207-219
[4]  
Alon N., 2000, PROBABILISTIC METHOD
[5]  
Alon Noga, 2004, Proc. of the 36th ACM STOC, P72, DOI 10.1145/1007352.1007371
[6]  
[Anonymous], 1979, Computers and Intractablity: A Guide to the Theoryof NP-Completeness
[7]  
Arora S., 1995, Proceedings of the Twenty-Seventh Annual ACM Symposium on the Theory of Computing, P284, DOI 10.1145/225058.225140
[8]   A POLYNOMIAL ALGORITHM FOR THE 2-PATH PROBLEM FOR SEMICOMPLETE DIGRAPHS [J].
BANGJENSEN, J ;
THOMASSEN, C .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 1992, 5 (03) :366-376