A fast method for comparing braids

被引:74
作者
Dehornoy, P
机构
[1] Dept. de Mathématiques, Université de Caen
关键词
D O I
10.1006/aima.1997.1605
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe a new method for comparing braid words which relies both on the automatic structure of the braid groups and on the existence of a linear ordering on braids. This syntactical algorithm is a direct generalization of the classical words reduction used in the description of free groups, and is more efficient in practice than all previously known methods. (C) 1997 Academic Press.
引用
收藏
页码:200 / 235
页数:36
相关论文
共 18 条
[1]  
[Anonymous], FINITE STATE ALGORIT
[2]   THEORY OF BRAIDS [J].
ARTIN, E .
ANNALS OF MATHEMATICS, 1947, 48 (01) :101-125
[3]  
BIRMAN JS, 1975, ANN MATH STUDIES, V82
[4]  
BURCKEL S, IN PRESS J PURE APPL
[5]   FROM LARGE CARDINALS TO BRAIDS VIA DISTRIBUTIVE ALGEBRA [J].
DEHORNOY, P .
JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 1995, 4 (01) :33-79
[6]   BRAID-GROUPS AND LEFT DISTRIBUTIVE OPERATIONS [J].
DEHORNOY, P .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 345 (01) :115-150
[7]  
DEHORNOY P, 1992, CR ACAD SCI I-MATH, V315, P633
[8]  
DEHORNOY P, IN PRESS J PURE APPL
[9]   GENERALIZED BRAID GROUPS [J].
DELIGNE, P .
INVENTIONES MATHEMATICAE, 1972, 17 (04) :273-&
[10]   ALGORITHMS FOR POSITIVE BRAIDS [J].
ELRIFAI, EA ;
MORTON, HR .
QUARTERLY JOURNAL OF MATHEMATICS, 1994, 45 (180) :479-497