ATM regulates ATR chromatin loading in response to DNA double-strand breaks

被引:184
作者
Cuadrado, M [1 ]
Martinez-Pastor, B [1 ]
Murga, M [1 ]
Toledo, LI [1 ]
Gutierrez-Martinez, P [1 ]
Lopez, E [1 ]
Fernandez-Capetillo, O [1 ]
机构
[1] Spanish Natl Canc Ctr, Genom Instabil Grp, E-28029 Madrid, Spain
关键词
D O I
10.1084/jem.20051923
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
DNA double-strand breaks (DSBs) are among the most deleterious lesions that can challenge genomic integrity. Concomitant to the repair of the breaks, a rapid signaling cascade must be coordinated at the lesion site that leads to the activation of cell cycle checkpoints and/or apoptosis. In this context, ataxia telangiectasia mutated (ATM) and ATM and Rad-3-related (ATR) protein kinases are the earliest signaling molecules that are known to initiate the transduction cascade at damage sites. The current model places ATM and ATR in separate molecular routes that orchestrate distinct pathways of the checkpoint responses. Whereas ATM signals DSBs arising from ionizing radiation (IR) through a Chk2-dependent pathway, ATR is activated in a variety of replication-linked DSBs and leads to activation of the checkpoints in a Chk1 kinase-dependent manner. However, activation of the G2/M checkpoint in response to IR escapes this accepted paradigm because it is dependent on both ATM and ATR but independent of Chk2. Our data provides an explanation for this observation and places ATM activity upstream of ATR recruitment to IR-damaged chromatin. These data provide experimental evidence of an active cross talk between ATM and ATR signaling pathways in response to DNA damage.
引用
收藏
页码:297 / 303
页数:7
相关论文
共 23 条
[1]   Cell cycle checkpoint signaling through the ATM and ATR kinases [J].
Abraham, RT .
GENES & DEVELOPMENT, 2001, 15 (17) :2177-2196
[2]   Pathophysiology of bone metastases in prostate cancer [J].
Abrahamsson, PA .
EUROPEAN UROLOGY SUPPLEMENTS, 2004, 3 (05) :3-9
[3]  
Andegeko Y, 2001, J BIOL CHEM, V276, P38224
[4]   DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation [J].
Bakkenist, CJ ;
Kastan, MB .
NATURE, 2003, 421 (6922) :499-506
[5]   DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis [J].
Bartkova, J ;
Horejsi, Z ;
Koed, K ;
Krämer, A ;
Tort, F ;
Zieger, K ;
Guldberg, P ;
Sehested, M ;
Nesland, JM ;
Lukas, C ;
Orntoft, T ;
Lukas, J ;
Bartek, J .
NATURE, 2005, 434 (7035) :864-870
[6]   Essential and dispensable roles of ATR in cell cycle arrest and genome maintenance [J].
Brown, EJ ;
Baltimore, D .
GENES & DEVELOPMENT, 2003, 17 (05) :615-628
[7]   The life and death of DNA-PK [J].
Collis, SJ ;
DeWeese, TL ;
Jeggo, PA ;
Parker, AR .
ONCOGENE, 2005, 24 (06) :949-961
[8]   ATR and ATRIP: Partners in checkpoint signaling [J].
Cortez, D ;
Guntuku, S ;
Qin, J ;
Elledge, SJ .
SCIENCE, 2001, 294 (5547) :1713-1716
[9]   Cell cycle checkpoints: Preventing an identity crisis [J].
Elledge, SJ .
SCIENCE, 1996, 274 (5293) :1664-1672
[10]   DNA damage-induced G2-M checkpoint activation by histone H2AX and 53BP1 [J].
Fernandez-Capetillo, O ;
Chen, HT ;
Celeste, A ;
Ward, I ;
Romanienko, PJ ;
Morales, JC ;
Naka, K ;
Xia, ZF ;
Camerini-Otero, RD ;
Motoyama, N ;
Carpenter, PB ;
Bonner, WM ;
Chen, JJ ;
Nussenzweig, A .
NATURE CELL BIOLOGY, 2002, 4 (12) :993-997