Specificity in transmembrane helix-helix interactions can define a hierarchy of stability for sequence variants

被引:158
作者
Fleming, KG
Engelman, DM
机构
[1] Johns Hopkins Univ, Dept Biophys, Baltimore, MD 21218 USA
[2] Yale Univ, Dept Mol Biophys & Biochem, New Haven, CT 06520 USA
关键词
D O I
10.1073/pnas.251367498
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The folding, stability, and oligomerization of helical membrane proteins depend in part on a precise set of packing interactions between transmembrane helices. To understand the energetic principles of these helix-helix interactions, we have used alanine-scanning mutagenesis and sedimentation equilibrium analytical ultracentrifugation to quantitatively examine the sequence dependence of the glycophorin A transmembrane helix dimerization. In all cases, we found that mutations to alanine at interface positions cost free energy of association. In contrast, mutations to alanine away from the dimer interface showed free energies of association that are insignificantly different from wild-type or are slightly stabilizing. Our study further revealed that the energy of association is not evenly distributed across the interface, but that there are several "hot spots" for interaction including both glycines participating in a GxxxG motif. Inspection of the NMR structure indicates that simple principles of protein-protein interactions can explain the changes in energy that are observed. A comparison of the dimer stability between different hydrophobic environments suggested that the hierarchy of stability for sequence variants is conserved. Together, these findings imply that the protein-protein interaction portion of the overall association energy may be separable from the contributions arising from protein-lipid and lipid-lipid energy terms. This idea is a conceptual simplification of the membrane protein folding problem and has implications for prediction and design.
引用
收藏
页码:14340 / 14344
页数:5
相关论文
共 33 条
[1]   GLYCOPHORIN-A HELICAL TRANSMEMBRANE DOMAINS DIMERIZE IN PHOSPHOLIPID-BILAYERS - A RESONANCE ENERGY-TRANSFER STUDY [J].
ADAIR, BD ;
ENGELMAN, DM .
BIOCHEMISTRY, 1994, 33 (18) :5539-5544
[2]  
Bevington R., 1969, DATA REDUCTION ERROR
[3]  
Brosig B, 1998, PROTEIN SCI, V7, P1052
[4]   A method for determining transmembrane helix association and orientation in detergent micelles using small angle x-ray scattering [J].
Bu, ZM ;
Engelman, DM .
BIOPHYSICAL JOURNAL, 1999, 77 (02) :1064-1073
[5]   BACKBONE-DEPENDENT ROTAMER LIBRARY FOR PROTEINS - APPLICATION TO SIDE-CHAIN PREDICTION [J].
DUNBRACK, RL ;
KARPLUS, M .
JOURNAL OF MOLECULAR BIOLOGY, 1993, 230 (02) :543-574
[6]   Bayesian statistical analysis of protein side-chain rotamer preferences [J].
Dunbrack, RL ;
Cohen, FE .
PROTEIN SCIENCE, 1997, 6 (08) :1661-1681
[7]   Internal packing of helical membrane proteins [J].
Eilers, M ;
Shekar, SC ;
Shieh, T ;
Smith, SO ;
Fleming, PJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (11) :5796-5801
[8]   Detergents modulate dimerization but not helicity, of the glycophorin A transmembrane domain [J].
Fisher, LE ;
Engelman, DM ;
Sturgis, JN .
JOURNAL OF MOLECULAR BIOLOGY, 1999, 293 (03) :639-651
[9]  
Fleming KG, 2000, METHOD ENZYMOL, V323, P63
[10]   The effect of point mutations on the free energy of transmembrane alpha-helix dimerization [J].
Fleming, KG ;
Ackerman, AL ;
Engelman, DM .
JOURNAL OF MOLECULAR BIOLOGY, 1997, 272 (02) :266-275