Generalized monotone bifunctions and equilibrium problems

被引:341
作者
Bianchi, M [1 ]
Schaible, S [1 ]
机构
[1] UNIV CALIF RIVERSIDE,GRAD SCH MANAGEMENT,RIVERSIDE,CA 92521
关键词
generalized monotonicity; equilibrium problems; variational inequality problems; existence of solutions; uniqueness;
D O I
10.1007/BF02192244
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Using quasimonotone and pseudomonotone bifunctions, we derive existence results for the following equilibrium problem: given a closed and convex subset K of a real topological vector space, find (x) over bar is an element of K such that F((x) over bar, y) greater than or equal to 0 for all y is an element of K. In addition, we study the solution set and the uniqueness of a solution. The paper generalizes results obtained recently for variational inequalities.
引用
收藏
页码:31 / 43
页数:13
相关论文
共 22 条
[1]  
AVRIEL M, 1981, GENERALIZED CONCAVIT, P21
[2]  
Avriel Mordecai., 1988, GEN CONCAVITY
[3]  
BAIOCCHI C, 1978, DISEQUAZIONI VARAZIO, V1
[4]  
BIANCHI M, 1993, RIV MATEMATICA SCI E, V16, P17
[5]  
BLUM E, 1992, 11 INT M MATH PROGR
[6]  
Blum E., 1994, Math. Stud., V63, P123
[7]  
Brezis, 1972, B UNIONE MAT ITAL, V6, P293
[8]   PSEUDOMONOTONE COMPLEMENTARITY-PROBLEMS IN HILBERT-SPACE [J].
COTTLE, RW ;
YAO, JC .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1992, 75 (02) :281-295
[9]   A GENERALIZATION OF TYCHONOFF FIXED POINT THEOREM [J].
FAN, K .
MATHEMATISCHE ANNALEN, 1961, 142 (03) :305-310
[10]   Quasimonotone variational inequalities in Banach spaces [J].
Hadjisavvas, N ;
Schaible, S .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1996, 90 (01) :95-111