Interaction effects on two-dimensional fermions with random hopping

被引:28
作者
Foster, MS [1 ]
Ludwig, AWW [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
关键词
D O I
10.1103/PhysRevB.73.155104
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the effects of generic short-ranged interactions on a system of two-dimensional (2D) Dirac fermions subject to a special kind of static disorder, often referred to as "chiral." The noninteracting system is a member of the disorder class BDI [M. R. Zirnbauer, J. Math. Phys. 37, 4986 (1996)]. It emerges, for example, as a low-energy description of a time-reversal invariant tight-binding model of spinless fermions on a honeycomb lattice, subject to random hopping, and possessing particle-hole symmetry. It is known that, in the absence of interactions, this disordered system is special in that it does not localize in 2D, but possesses extended states and a finite conductivity at zero energy, as well as a strongly divergent low-energy density of states. In the context of the hopping model, the short-range interactions that we consider are particle-hole symmetric density-density interactions. Using a perturbative one-loop renormalization group analysis, we show that the same mechanism responsible for the divergence of the density of states in the noninteracting system leads to an instability, in which the interactions are driven strongly relevant by the disorder. This result should be contrasted with the limit of clean Dirac fermions in 2D, which is stable against the inclusion of weak short-ranged interactions. Our work suggests a mechanism wherein a clean system, initially insensitive to interaction effects, can be made unstable to interactions upon the inclusion of weak static disorder. We dub this mechanism a "disorder-driven Mott transition." Our result for 2D fermions also contrasts sharply with known results in one dimension, where a similar delocalized phase has been shown to be robust against the inclusion of weak interaction effects.
引用
收藏
页数:15
相关论文
共 52 条
[1]   Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures [J].
Altland, A ;
Zirnbauer, MR .
PHYSICAL REVIEW B, 1997, 55 (02) :1142-1161
[2]  
Amit D. J., 1984, FIELD THEORY RENORMA
[3]   Delocalization transition via supersymmetry in one dimension [J].
Balents, L ;
Fisher, MPA .
PHYSICAL REVIEW B, 1997, 56 (20) :12970-12991
[4]   Quantum and classical localization, the spin quantum Hall effect, and generalizations [J].
Beamond, EJ ;
Cardy, J ;
Chalker, JT .
PHYSICAL REVIEW B, 2002, 65 (21) :1-10
[5]   THE ANDERSON-MOTT TRANSITION [J].
BELITZ, D ;
KIRKPATRICK, TR .
REVIEWS OF MODERN PHYSICS, 1994, 66 (02) :261-390
[6]  
BERNARD D, 1997, LOW DIMENSIONAL APPL, V362
[7]   Some spectral properties of the one-dimensional disordered Dirac equation [J].
Bocquet, M .
NUCLEAR PHYSICS B, 1999, 546 (03) :621-646
[8]   Network models for localization problems belonging to the chiral symmetry classes [J].
Bocquet, M ;
Chalker, JT .
PHYSICAL REVIEW B, 2003, 67 (05) :542041-5420413
[9]   Network models for chiral symmetry classes of Anderson localisation [J].
Bocquet, M ;
Chalker, JT .
ANNALES HENRI POINCARE, 2003, 4 (Suppl 2) :S539-S557
[10]   Disordered 2d quasiparticles in class D: Dirac fermions with random mass, and dirty superconductors [J].
Bocquet, M ;
Serban, D ;
Zirnbauer, MR .
NUCLEAR PHYSICS B, 2000, 578 (03) :628-680