Enhanced expression and localization of heme oxygenase-1 during recovery phase of porcine stunned myocardium

被引:26
作者
Sharma, HS
Das, DK
Verdouw, PD
机构
[1] Erasmus Univ, Dept Pharmacol, NL-3000 DR Rotterdam, Netherlands
[2] Erasmus Univ, Thoraxctr, Cardiovasc Res Inst, NL-3000 DR Rotterdam, Netherlands
[3] UCONN Hlth Ctr, Dept Pharmacol, Farmington, CT USA
关键词
ischemia; heme oxygenase; immunohistochemistry; heart; pig;
D O I
10.1023/A:1006984027403
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Myocardial adaptation to ischemia involves up-regulated expression of a number of genes implicated in conferring cytoprotection. We have previously shown that myocardial ischemia followed by reperfusion leads to a co-ordinated expression of mRNAs encoding heme oxygenase-1 (HO-1) and ubiquitin in pigs. HO-1 participates in biological reaction leading to the formation of the antioxidant, bilirubin and the putative cellular messenger, carbon monoxide. In the present study, we examined the expression and cellular localization of HO-1 in the heart during myocardial stunning in anesthetized pigs. After thoracotomy, the LAD was occluded for 10 min and reperfused for 30 min (group I, n = 4), again occluded for 10 min and reperfused for 30 min (group II, n = 6), 90 min (group III, n = 4), 210 min (group IV, n = 5) and for 390 min (group V, n = 4). Myocardial tissue specimens were collected in 10% formalin as well as in liquid nitrogen and processed for immunohistochemistry and mRNA expression analysis, respectively. In the distribution territory of the LAD (experimental, E), systolic wall thickening was significantly decreased (39 +/- 6%) as compared to that of the area perfused by left circumflex coronary artery (LCx, control) in group I and remained depressed in all subsequent groups. Northern blot analysis revealed that the expression of a single mRNA species of 1.8 kb encoding HO-1 was significantly induced in E as compared to control in groups II and III with maximum mRNA levels in group II (1.9 +/- 0.4 fold vs. control). Immunoreactive HO-1 was localized in the cytoplasm of cardiomyocytes as well as in the perivascular regions in all groups. Semiquantitative analysis of HO-1 staining showed significantly enhanced levels of HO-1 in perivascular region in E as compared to respective controls derived from groups III and IV. These results suggest that myocardial adaptive response to ischemia involves up-regulation of HO-1 in cells of perivascular region indicating that this enzyme may participate in regulating vascular tone via CO and thereby, contributing in pathophysiologically important defense mechanism(s) in the heart.
引用
收藏
页码:133 / 139
页数:7
相关论文
共 44 条
[1]   EXPRESSION OF HEAT-SHOCK PROTEINS IN THE NORMAL AND STUNNED PORCINE MYOCARDIUM [J].
ANDRES, J ;
SHARMA, HS ;
KNOLL, R ;
STAHL, J ;
SASSEN, LMA ;
VERDOUW, PD ;
SCHAPER, W .
CARDIOVASCULAR RESEARCH, 1993, 27 (08) :1421-1429
[2]   MECHANISM OF MYOCARDIAL STUNNING [J].
BOLLI, R .
CIRCULATION, 1990, 82 (03) :723-738
[3]   PROTOONCOGENE EXPRESSION IN PORCINE MYOCARDIUM SUBJECTED TO ISCHEMIA AND REPERFUSION [J].
BRAND, T ;
SHARMA, HS ;
FLEISCHMANN, KE ;
DUNCKER, DJ ;
MCFALLS, EO ;
VERDOUW, PD ;
SCHAPER, W .
CIRCULATION RESEARCH, 1992, 71 (06) :1351-1360
[4]   Transcriptional activation of the H0-1 gene by lipopolysaccharide is mediated by 5′ distal enhancers:: Role of reactive oxygen intermediates and AP-1 [J].
Camhi, SL ;
Alam, J ;
Wiegand, GW ;
Chin, BY ;
Choi, AMK .
AMERICAN JOURNAL OF RESPIRATORY CELL AND MOLECULAR BIOLOGY, 1998, 18 (02) :226-234
[5]   Heme oxygenase-1: Function, regulation, and implication of a novel stress-inducible protein in oxidant-induced lung injury [J].
Choi, AMK ;
Alam, J .
AMERICAN JOURNAL OF RESPIRATORY CELL AND MOLECULAR BIOLOGY, 1996, 15 (01) :9-19
[6]  
CHOMCZYNSKI P, 1987, ANAL BIOCHEM, V162, P156, DOI 10.1016/0003-2697(87)90021-2
[7]  
CRUSE I, 1988, J BIOL CHEM, V263, P3348
[8]  
Deramaudt BMJM, 1998, J CELL BIOCHEM, V68, P121, DOI 10.1002/(SICI)1097-4644(19980101)68:1<121::AID-JCB12>3.0.CO
[9]  
2-K
[10]   Nitric oxide induces heme oxygenase-1 gene expression and carbon monoxide production in vascular smooth muscle cells [J].
Durante, W ;
Kroll, MH ;
Christodoulides, N ;
Peyton, KJ ;
Schafer, AI .
CIRCULATION RESEARCH, 1997, 80 (04) :557-564