Julian dates and introduced temporal error in remote sensing vegetation phenology studies

被引:30
作者
Thayn, J. B. [1 ]
Price, K. P. [1 ]
机构
[1] Univ Kansas, Dept Geog, Lawrence, KS 66045 USA
关键词
D O I
10.1080/01431160802235829
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Remote-sensing-based vegetation phenology studies are commonly used to study agriculture, forestry, species distributions, and the effect of climate change on vegetation. These studies utilize annual time series of NDVI data to characterize seasonal growth patterns. The NDVI data for most of these studies have been pre-processed using a maximum value compositing process to minimize contamination from clouds. A side effect of this process is a degradation of temporal data, since NDVI values are assigned to multiday periods rather than the specific date of image capture. In this study, the compositing process is examined to determine if there is a reliable pattern to pixel selection. Also, the magnitude of the introduced error is estimated by comparing vegetation phenology metrics calculated using the temporally degraded data and metrics calculated using the actual date of each pixel. The root mean square errors between these datasets ranged from 9.4 to 10.9 days, much larger than is acceptable for most phenology studies. We conclude that vegetation phenology studies must make use of accurate temporal data to characterize changes in vegetation seasonality.
引用
收藏
页码:6045 / 6049
页数:5
相关论文
共 14 条
[1]   Changes in European spring phenology [J].
Ahas, R ;
Aasa, A ;
Menzel, A ;
Fedotova, VG ;
Scheifinger, H .
INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2002, 22 (14) :1727-1738
[2]   Monitoring spring canopy phenology of a deciduous broadleaf forest using MODIS [J].
Ahl, Douglas E. ;
Gower, Stith T. ;
Burrows, Sean N. ;
Shabanov, Nikolay V. ;
Myneni, Ranga B. ;
Knyazikhin, Yuri .
REMOTE SENSING OF ENVIRONMENT, 2006, 104 (01) :88-95
[3]  
[Anonymous], [No title captured]
[4]   Responses of spring phenology to climate change [J].
Badeck, FW ;
Bondeau, A ;
Böttcher, K ;
Doktor, D ;
Lucht, W ;
Schaber, J ;
Sitch, S .
NEW PHYTOLOGIST, 2004, 162 (02) :295-309
[5]   Green leaf phenology at Landsat resolution: Scaling from the field to the satellite [J].
Fisher, JI ;
Mustard, JF ;
Vadeboncoeur, MA .
REMOTE SENSING OF ENVIRONMENT, 2006, 100 (02) :265-279
[6]  
HOBLEN BN, 1986, INT J REMOTE SENS, V7, P1417
[7]   A cost analysis of a smoke alarm installation and fire safety education program [J].
Parmer, John E. ;
Corso, Phaedra S. ;
Ballesteros, Michael F. .
JOURNAL OF SAFETY RESEARCH, 2006, 37 (04) :367-373
[8]   A globally coherent fingerprint of climate change impacts across natural systems [J].
Parmesan, C ;
Yohe, G .
NATURE, 2003, 421 (6918) :37-42
[9]   MEASURING PHENOLOGICAL VARIABILITY FROM SATELLITE IMAGERY [J].
REED, BC ;
BROWN, JF ;
VANDERZEE, D ;
LOVELAND, TR ;
MERCHANT, JW ;
OHLEN, DO .
JOURNAL OF VEGETATION SCIENCE, 1994, 5 (05) :703-714
[10]   Fingerprints of global warming on wild animals and plants [J].
Root, TL ;
Price, JT ;
Hall, KR ;
Schneider, SH ;
Rosenzweig, C ;
Pounds, JA .
NATURE, 2003, 421 (6918) :57-60