Low rates of expression profile divergence in highly expressed genes and tissue-specific genes during mammalian evolution

被引:123
作者
Liao, Ben-Yang [1 ]
Zhang, Jianzhi [1 ]
机构
[1] Univ Michigan, Dept Ecol & Evolutionary Biol, Ann Arbor, MI 48109 USA
关键词
evolutionary rate; expression profile; expression level; tissue specificity; mammals;
D O I
10.1093/molbev/msj119
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Evolutionary rates provide important information about the pattern and mechanism of evolution. Although the rate of gene sequence evolution has been well studied, the rate of gene expression evolution is poorly understood. In particular, it is unclear whether the gene expression level and tissue specificity influence the divergence of expression profiles between orthologous genes. Here we address this question using a microarray data set comprising the expression signals of 10,607 pairs of orthologous human and mouse genes from over 60 tissues per species. We show that the level of gene expression and the degree of tissue specificity are generally conserved between the human and mouse orthologs. The rate of gene expression profile change during evolution is negatively correlated with the level of gene expression, measured by either the average or the highest level among all tissues examined. This is analogous to the observation that the rate of gene (or protein) sequence evolution is negatively correlated with the gene expression level. The impacts of the degree of tissue specificity on the evolutionary rate of gene sequence and that of expression profile, however, are opposite. Highly tissue-specific genes tend to evolve rapidly at the gene sequence level but slowly at the expression profile level. Thus, different forces and selective constraints must underlie the evolution of gene sequence and that of gene expression.
引用
收藏
页码:1119 / 1128
页数:10
相关论文
共 50 条
[1]   Evolution at two levels: On genes and form [J].
Carroll, SB .
PLOS BIOLOGY, 2005, 3 (07) :1159-1166
[2]   Manifold anomalies in gene expression in a vineyard isolate of Saccharomyces cerevisiae revealed by DNA microarray analysis [J].
Cavalieri, D ;
Townsend, JP ;
Hartl, DL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (22) :12369-12374
[3]   The transcriptional consequences of mutation and natural selection in Caenorhabditis elegans [J].
Denver, DR ;
Morris, K ;
Streelman, JT ;
Kim, SK ;
Lynch, M ;
Thomas, WK .
NATURE GENETICS, 2005, 37 (05) :544-548
[4]   A single determinant dominates the rate of yeast protein evolution [J].
Drummond, DA ;
Raval, A ;
Wilke, CO .
MOLECULAR BIOLOGY AND EVOLUTION, 2006, 23 (02) :327-337
[5]   Why highly expressed proteins evolve slowly [J].
Drummond, DA ;
Bloom, JD ;
Adami, C ;
Wilke, CO ;
Arnold, FH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (40) :14338-14343
[6]   Determinants of substitution rates in mammalian genes: Expression pattern affects selection intensity but not mutation rate [J].
Duret, L ;
Mouchiroud, D .
MOLECULAR BIOLOGY AND EVOLUTION, 2000, 17 (01) :68-74
[7]   Intra- and interspecific variation in primate gene expression patterns [J].
Enard, W ;
Khaitovich, P ;
Klose, J ;
Zöllner, S ;
Heissig, F ;
Giavalisco, P ;
Nieselt-Struwe, K ;
Muchmore, E ;
Varki, A ;
Ravid, R ;
Doxiadis, GM ;
Bontrop, RE ;
Pääbo, S .
SCIENCE, 2002, 296 (5566) :340-343
[8]   Rapid evolution of expression and regulatory divergences after yeast gene duplication [J].
Gu, X ;
Zhang, ZQ ;
Huang, W .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (03) :707-712
[9]   Duplicate genes increase gene expression diversity within and between species [J].
Gu, ZL ;
Rifkin, SA ;
White, KP ;
Li, WH .
NATURE GENETICS, 2004, 36 (06) :577-579
[10]   Rapid divergence in expression between duplicate genes inferred from microarray data [J].
Gu, ZL ;
Nicolae, D ;
Lu, HHS ;
Li, WH .
TRENDS IN GENETICS, 2002, 18 (12) :609-613