Modelling and simulating generic RNA-Seq experiments with the flux simulator

被引:200
作者
Griebel, Thasso [1 ,2 ]
Zacher, Benedikt [2 ,3 ]
Ribeca, Paolo [1 ,4 ]
Raineri, Emanuele [5 ]
Lacroix, Vincent [1 ,6 ]
Guigo, Roderic [1 ]
Sammeth, Michael [1 ,2 ]
机构
[1] CRG, Bioinformat & Genom Program, Barcelona 08003, Spain
[2] CNAG, Funct Bioinformat Grp, Barcelona 08028, Spain
[3] Gene Ctr Munich, Computat Biol & Regulatory Networks Grp, D-81377 Munich, Germany
[4] CNAG, Algorithm Dev Grp, Barcelona 08028, Spain
[5] CNAG, Stat Genom Grp, Barcelona 08028, Spain
[6] Univ Lyon 1, F-69622 Villeurbanne, France
关键词
GENOME-WIDE ANALYSIS; TRANSCRIPTOMES; SEQUENCES; LIBRARIES; DATABASE;
D O I
10.1093/nar/gks666
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
High-throughput sequencing of cDNA libraries constructed from cellular RNA complements (RNA-Seq) naturally provides a digital quantitative measurement for every expressed RNA molecule. Nature, impact and mutual interference of biases in different experimental setups are, however, still poorly understood-mostly due to the lack of data from intermediate protocol steps. We analysed multiple RNA-Seq experiments, involving different sample preparation protocols and sequencing platforms: we broke them down into their common-and currently indispensable-technical components (reverse transcription, fragmentation, adapter ligation, PCR amplification, gel segregation and sequencing), investigating how such different steps influence abundance and distribution of the sequenced reads. For each of those steps, we developed universally applicable models, which can be parameterised by empirical attributes of any experimental protocol. Our models are implemented in a computer simulation pipeline called the Flux Simulator, and we show that read distributions generated by different combinations of these models reproduce well corresponding evidence obtained from the corresponding experimental setups. We further demonstrate that our in silico RNA-Seq provides insights about hidden precursors that determine the final configuration of reads along gene bodies; enhancing or compensatory effects that explain apparently controversial observations can be observed. Moreover, our simulations identify hitherto unreported sources of systematic bias from RNA hydrolysis, a fragmentation technique currently employed by most RNA-Seq protocols.
引用
收藏
页码:10073 / 10083
页数:11
相关论文
共 42 条
[1]   Barcoding bias in high-throughput multiplex sequencing of miRNA [J].
Alon, Shahar ;
Vigneault, Francois ;
Eminaga, Seda ;
Christodoulou, Danos C. ;
Seidman, Jonathan G. ;
Church, George M. ;
Eisenberg, Eli .
GENOME RESEARCH, 2011, 21 (09) :1506-1511
[2]  
[Anonymous], 1982, Molecular cloning
[3]  
[Anonymous], 1949, Human behaviour and the principle of least-effort
[4]   ASSEMBLY OF A PROCESSIVE MESSENGER-RNA POLYADENYLATION COMPLEX [J].
BIENROTH, S ;
KELLER, W ;
WAHLE, E .
EMBO JOURNAL, 1993, 12 (02) :585-594
[5]   The return of Zipf: Towards a further understanding of the rank-size distribution [J].
Brakman, S ;
Garretsen, H ;
Van Marrewijk, C ;
van den Berg, M .
JOURNAL OF REGIONAL SCIENCE, 1999, 39 (01) :183-213
[6]   Normalization and subtraction of cap-trapper-selected cDNAs to prepare full-length cDNA libraries for rapid discovery of new genes [J].
Carninci, P ;
Shibata, Y ;
Hayatsu, N ;
Sugahara, Y ;
Shibata, K ;
Itoh, M ;
Konno, H ;
Okazaki, Y ;
Muramatsu, M ;
Hayashizaki, Y .
GENOME RESEARCH, 2000, 10 (10) :1617-1630
[7]   Genome-wide analysis of mammalian promoter architecture and evolution [J].
Carninci, Piero ;
Sandelin, Albin ;
Lenhard, Boris ;
Katayama, Shintaro ;
Shimokawa, Kazuro ;
Ponjavic, Jasmina ;
Semple, Colin A. M. ;
Taylor, Martin S. ;
Engström, Par G. ;
Frith, Martin C. ;
Forrest, Alistair R. R. ;
Alkema, Wynand B. ;
Tan, Sin Lam ;
Plessy, Charles ;
Kodzius, Rimantas ;
Ravasi, Timothy ;
Kasukawa, Takeya ;
Fukuda, Shiro ;
Kanamori-Katayama, Mutsumi ;
Kitazume, Yayoi ;
Kawaji, Hideya ;
Kai, Chikatoshi ;
Nakamura, Mari ;
Konno, Hideaki ;
Nakano, Kenji ;
Mottagui-Tabar, Salim ;
Arner, Peter ;
Chesi, Alessandra ;
Gustincich, Stefano ;
Persichetti, Francesca ;
Suzuki, Harukazu ;
Grimmond, Sean M. ;
Wells, Christine A. ;
Orlando, Valerio ;
Wahlestedt, Claes ;
Liu, Edison T. ;
Harbers, Matthias ;
Kawai, Jun ;
Bajic, Vladimir B. ;
Hume, David A. ;
Hayashizaki, Yoshihide .
NATURE GENETICS, 2006, 38 (06) :626-635
[8]   Saccharomyces Genome Database (SGD) provides tools to identify and analyze sequences from Saccharomyces cerevisiae and related sequences from other organisms [J].
Christie, KR ;
Weng, S ;
Balakrishnan, R ;
Costanzo, MC ;
Dolinski, K ;
Dwight, SS ;
Engel, SR ;
Feierbach, B ;
Fisk, DG ;
Hirschman, JE ;
Hong, EL ;
Issel-Tarver, L ;
Nash, R ;
Sethuraman, A ;
Starr, B ;
Theesfeld, CL ;
Andrada, R ;
Binkley, G ;
Dong, Q ;
Lane, C ;
Schroeder, M ;
Botstein, D ;
Cherry, JM .
NUCLEIC ACIDS RESEARCH, 2004, 32 :D311-D314
[9]  
Davidson E.H., 1976, GENE ACTIVITY EARLY, VSecond
[10]   Substantial biases in ultra-short read data sets from high-throughput DNA sequencing [J].
Dohm, Juliane C. ;
Lottaz, Claudio ;
Borodina, Tatiana ;
Himmelbauer, Heinz .
NUCLEIC ACIDS RESEARCH, 2008, 36 (16)