Glutamate receptors on dopamine neurons control the persistence of cocaine seeking

被引:183
作者
Engblom, David [2 ]
Bilbao, Ainhoa [3 ]
Sanchis-Segura, Carles [3 ]
Dahan, Lionel [1 ]
Perreau-Lenz, Stephanie [3 ]
Balland, Benedicte [1 ]
Parkitna, Jan Rodriguez [2 ]
Lujan, Rafael [5 ]
Halbout, Briac [3 ]
Mameli, Manuel [1 ]
Parlato, Rosanna [2 ]
Sprengel, Rolf [6 ]
Luescher, Christian [1 ,4 ]
Schuetz, Guenther [2 ]
Spanagel, Rainer [3 ]
机构
[1] Univ Geneva, Fac Med, Dept Basic Neurosci, CH-1211 Geneva, Switzerland
[2] German Canc Res Ctr, Div Mol Biol Cell 1, D-69120 Heidelberg, Germany
[3] Cent Inst Mental Hlth, Dept Psychopharmacol, D-68159 Mannheim, Germany
[4] Univ Hosp Geneva, Dept Clin Neurosci, Neurol Clin, CH-1211 Geneva, Switzerland
[5] Univ Castilla La Mancha, Dept Ciencias Med, Fac Med CRIB, Albacete 02006, Spain
[6] Max Planck Inst Med Res, Dept Mol Neurosci, D-69120 Heidelberg, Germany
基金
瑞典研究理事会;
关键词
D O I
10.1016/j.neuron.2008.07.010
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Cocaine strengthens excitatory synapses onto midbrain dopamine neurons through the synaptic delivery of GluR1-containing AMPA receptors. This cocaine-evoked plasticity depends on NMDA receptor activation, but its behavioral significance in the context of addiction remains elusive. Here, we generated mice lacking the GluR1, GluR2, or NR1 receptor subunits selectively in dopamine neurons. We report that in midbrain slices of cocaine-treated mice, synaptic transmission was no longer strengthened when GluR1 or NR1 was abolished, while in the respective mice the drug still induced normal conditioned place preference and locomotor sensitization. In contrast, extinction of drug-seeking behavior was absent in mice lacking GluR1, while in the NR1 mutant mice reinstatement was abolished. In conclusion, cocaine-evoked synaptic plasticity does not mediate concurrent short-term behavioral effects of the drug but may initiate adaptive changes eventually leading to the persistence of drug-seeking behavior.
引用
收藏
页码:497 / 508
页数:12
相关论文
共 47 条
[1]   Cocaine sensitization and reward are under the influence of circadian genes and rhythm [J].
Abarca, C ;
Albrecht, U ;
Spanagel, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (13) :9026-9030
[2]   NMDA receptors inhibit synapse unsilencing during brain development [J].
Adesnik, Hillel ;
Li, Guangnan ;
During, Matthew J. ;
Pleasure, Samuel J. ;
Nicoll, Roger A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (14) :5597-5602
[3]   Cocaine triggered AMPA receptor redistribution is reversed in vivo by mGluR-dependent long-term depression [J].
Bellone, C ;
Lüscher, C .
NATURE NEUROSCIENCE, 2006, 9 (05) :636-641
[4]   Acute and chronic cocaine-induced potentiation of synaptic strength in the ventral tegmental area: Electrophysiological and behavioral correlates in individual rats [J].
Borgland, SL ;
Malenka, RC ;
Bonci, A .
JOURNAL OF NEUROSCIENCE, 2004, 24 (34) :7482-7490
[5]   Elevated levels of GluR1 in the midbrain: a trigger for sensitization to drugs of abuse? [J].
Carlezon, WA ;
Nestler, EJ .
TRENDS IN NEUROSCIENCES, 2002, 25 (12) :610-615
[6]   Sensitization to morphine induced by viral-mediated gene transfer [J].
Carlezon, WA ;
Boundy, VA ;
Haile, CN ;
Lane, SB ;
Kalb, RG ;
Neve, RL ;
Nestler, EJ .
SCIENCE, 1997, 277 (5327) :812-814
[7]   Repeated cocaine alters glutamate receptor subunit levels in the nucleus accumbens and ventral tegmental area of rats that develop behavioral sensitization [J].
Churchill, L ;
Swanson, CJ ;
Urbina, M ;
Kalivas, PW .
JOURNAL OF NEUROCHEMISTRY, 1999, 72 (06) :2397-2403
[8]  
DI CG, 1988, P NATL ACAD SCI USA, V85, P5274
[9]   Cocaine-induced potentiation of synaptic strength in dopamine neurons: Behavioral correlates in GluRA(-/-) mice [J].
Dong, Y ;
Saal, D ;
Thomas, M ;
Faust, R ;
Bonci, A ;
Robinson, T ;
Malenka, RC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (39) :14282-14287
[10]   Inducible gene inactivation in neurons of the adult mouse forebrain [J].
Erdmann, Gitta ;
Schuetz, Guenther ;
Berger, Stefan .
BMC NEUROSCIENCE, 2007, 8 (1)