Substrate-binding sites of UBR1, the ubiquitin ligase of the N-end rule pathway

被引:88
作者
Xia, Zanxian [1 ]
Webster, Ailsa [2 ]
Du, Fangyong [3 ]
Piatkov, Konstantin [1 ]
Ghislain, Michel [4 ]
Varshavsky, Alexander [1 ]
机构
[1] CALTECH, Div Biol, Pasadena, CA 91125 USA
[2] Celltech R&D, Slough SL1 4EN, Berks, England
[3] Yale Univ, Dept Microbial Pathogenesis, New Haven, CT 06536 USA
[4] Univ Louvain, Grp Physiol Biochem, B-1348 Louvain, Belgium
基金
美国国家卫生研究院;
关键词
D O I
10.1074/jbc.M802583200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Substrates of a ubiquitin-dependent proteolytic system called the N-end rule pathway include proteins with destabilizing N-terminal residues. N-recognins, the pathway's ubiquitin ligases, contain three substrate-binding sites. The type-1 site is specific for basic N-terminal residues (Arg, Lys, and His). The type-2 site is specific for bulky hydrophobic N-terminal residues (Trp, Phe, Tyr, Leu, and Ile). We show here that the type-1/2 sites of UBR1, the sole N-recognin of the yeast Saccharomyces cerevisiae, are located in the first similar to 700 residues of the 1,950-residue UBR1. These sites are distinct in that they can be selectively inactivated by mutations, identified through a genetic screen. Mutations inactivating the type-1 site are in the previously delineated similar to 70-residue UBR motif characteristic of N-recognins. Fluorescence polarization and surface plasmon resonance were used to determine that UBR1 binds, with a K-d of similar to 1 mu M, to either type-1 or type-2 destabilizing N-terminal residues of reporter peptides but does not bind to a stabilizing N-terminal residue such as Gly. A third substrate-binding site of UBR1 targets an internal degron of CUP9, a transcriptional repressor of peptide import. We show that the previously demonstrated in vivo dependence of CUP9 ubiquitylation on the binding of cognate dipeptides to the type-1/2 sites of UBR1 can be reconstituted in a completely defined in vitro system. We also found that purified UBR1 and CUP9 interact nonspecifically and that specific binding ( which involves, in particular, the binding by cognate dipeptides to the UBR1 type-1/2 sites) can be restored either by a chaperone such as EF1A or through macromolecular crowding.
引用
收藏
页码:24011 / 24028
页数:18
相关论文
共 86 条
[1]   A RECOGNITION COMPONENT OF THE UBIQUITIN SYSTEM IS REQUIRED FOR PEPTIDE-TRANSPORT IN SACCHAROMYCES-CEREVISIAE [J].
ALAGRAMAM, K ;
NAIDER, F ;
BECKER, JM .
MOLECULAR MICROBIOLOGY, 1995, 15 (02) :225-234
[2]   Impaired neurogenesis and cardiovascular development in mice lacking the E3 ubiquitin ligases UBR1 and UBR2 of the N-end rule pathway [J].
An, JY ;
Seo, JW ;
Tasaki, T ;
Lee, MJ ;
Varshavsky, A ;
Kwon, YT .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (16) :6212-6217
[3]  
[Anonymous], 2006, CURRENT PROTOCOLS MO
[4]   THE DEGRADATION SIGNAL IN A SHORT-LIVED PROTEIN [J].
BACHMAIR, A ;
VARSHAVSKY, A .
CELL, 1989, 56 (06) :1019-1032
[5]   INVIVO HALF-LIFE OF A PROTEIN IS A FUNCTION OF ITS AMINO-TERMINAL RESIDUE [J].
BACHMAIR, A ;
FINLEY, D ;
VARSHAVSKY, A .
SCIENCE, 1986, 234 (4773) :179-186
[6]   YEAST N-TERMINAL AMIDASE - A NEW ENZYME AND COMPONENT OF THE N-END RULE PATHWAY [J].
BAKER, RT ;
VARSHAVSKY, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (20) :12065-12074
[7]  
Baker RT, 1991, P NATL ACAD SCI USA, V87, P2374
[8]   G(1) CYCLIN TURNOVER AND NUTRIENT-UPTAKE ARE CONTROLLED BY A COMMON PATHWAY IN YEAST [J].
BARRAL, Y ;
JENTSCH, S ;
MANN, C .
GENES & DEVELOPMENT, 1995, 9 (04) :399-409
[9]   THE RECOGNITION COMPONENT OF THE N-END RULE PATHWAY [J].
BARTEL, B ;
WUNNING, I ;
VARSHAVSKY, A .
EMBO JOURNAL, 1990, 9 (10) :3179-3189
[10]   The N-end rule pathway controls the import of peptides through degradation of a transcriptional repressor [J].
Byrd, C ;
Turner, GC ;
Varshavsky, A .
EMBO JOURNAL, 1998, 17 (01) :269-277