Characteristic varieties of arrangements

被引:75
作者
Cohen, DC [1 ]
Suciu, AI
机构
[1] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
[2] Northeastern Univ, Dept Math, Boston, MA 02115 USA
基金
美国国家科学基金会;
关键词
D O I
10.1017/S0305004199003576
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The kth Fitting ideal of the Alexander invariant B of an arrangement A of n complex hyperplanes defines a characteristic subvariety, V-k(A), of the algebraic torus (C*)(n). In the combinatorially determined case where B decomposes as a direct sum of local Alexander invariants, we obtain a complete description of V-k(A). For any arrangement A, we show that the tangent cone at the identity of this variety coincides with R-k(1)(A), one of the cohomology support loci of the Orlik-Solomon algebra. Using work of Arapura [1], we conclude that all irreducible components of V-k(A) which pass through the identity element of (C*)(n) are combinatorially determined, and that R-k(1)(A) is the union of a subspace arrangement in C-n, thereby resolving a conjecture of Falk [11]. We use these results to study the reflection arrangements associated to monomial groups.
引用
收藏
页码:33 / 53
页数:21
相关论文
共 29 条
[1]  
Arapura D, 1997, J ALGEBRAIC GEOM, V6, P563
[2]  
Brieskorn E. V., 1973, LECT NOTES MATH, V401, P21
[3]  
Broue M, 1998, J REINE ANGEW MATH, V500, P127
[4]  
COHEN D, IN PRESS T AM MATH S
[5]  
COHEN D. C., 1995, CENTENNIAL, P45, DOI [10.1090/conm/181/02029, DOI 10.1090/CONM/181/02029]
[6]   The braid monodromy of plane algebraic curves and hyperplane arrangements [J].
Cohen, DC ;
Suciu, AI .
COMMENTARII MATHEMATICI HELVETICI, 1997, 72 (02) :285-315
[7]  
DECONCINI G, 1995, Selecta Math. (N.S.), V1, P459
[8]  
DWYER W, 1987, B LOND MATH SOC, V19, P353
[9]  
Eisenbud D., 1995, GRAD TEXTS MATH, V150
[10]   THE MINIMAL MODEL OF THE COMPLEMENT OF AN ARRANGEMENT OF HYPERPLANES [J].
FALK, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 309 (02) :543-556