Probabilistic Population Codes for Bayesian Decision Making

被引:455
作者
Beck, Jeffrey M. [1 ]
Ma, Wei Ji [1 ,2 ]
Kiani, Roozbeh [3 ,4 ]
Hanks, Tim [3 ,4 ]
Churchland, Anne K. [3 ,4 ]
Roitman, Jamie [5 ]
Shadlen, Michael N. [3 ,4 ]
Latham, Peter E. [6 ]
Pouget, Alexandre [1 ,7 ]
机构
[1] Univ Rochester, Dept Brain & Cognit Sci, Rochester, NY 14627 USA
[2] Baylor Coll Med, Dept Neurosci, Houston, TX 77030 USA
[3] Univ Washington, Howard Hughes Med Inst, Seattle, WA 98195 USA
[4] Univ Washington, Dept Physiol & Biophys, Seattle, WA 98195 USA
[5] Univ Illinois, Dept Psychol, Chicago, IL 60607 USA
[6] Gatsby Computat Neurosci Unit, London WC1N 3AR, England
[7] Coll France, Theoret Neurosci Grp, F-75005 Paris, France
关键词
D O I
10.1016/j.neuron.2008.09.021
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
When making a decision, one must first accumulate evidence, often overtime, and then select the appropriate action. Here, we present a neural model of decision making that can perform both evidence accumulation and action selection optimally. More specifically, we show that, given a Poisson-like distribution of spike counts, biological neural networks can accumulate evidence without loss of information through linear integration of neural activity and can select the most likely action through attractor dynamics. This holds for arbitrary correlations, any tuning curves, continuous and discrete variables, and sensory evidence whose reliability varies over time. Our model predicts that the neurons in the lateral intraparietal cortex involved in evidence accumulation encode, on every trial, a probability distribution which predicts the animal's performance. We present experimental evidence consistent with this prediction and discuss other predictions applicable to more general settings.
引用
收藏
页码:1142 / 1152
页数:11
相关论文
共 52 条
[1]   The contribution of noise to contrast invariance of orientation tuning in cat visual cortex [J].
Anderson, JS ;
Lampl, I ;
Gillespie, DC ;
Ferster, D .
SCIENCE, 2000, 290 (5498) :1968-1972
[2]   Neural representation of probabilistic information [J].
Barber, MJ ;
Clark, JW ;
Anderson, CH .
NEURAL COMPUTATION, 2003, 15 (08) :1843-1864
[3]   The basal ganglia and cortex implement optimal decision making between alternative actions [J].
Bogacz, Rafal ;
Gurney, Kevin .
NEURAL COMPUTATION, 2007, 19 (02) :442-477
[4]   The physics of optimal decision making: A formal analysis of models of performance in two-alternative forced-choice tasks [J].
Bogacz, Rafal ;
Brown, Eric ;
Moehlis, Jeff ;
Holmes, Philip ;
Cohen, Jonathan D. .
PSYCHOLOGICAL REVIEW, 2006, 113 (04) :700-765
[5]   RESPONSES OF NEURONS IN MACAQUE MT TO STOCHASTIC MOTION SIGNALS [J].
BRITTEN, KH ;
SHADLEN, MN ;
NEWSOME, WT ;
MOVSHON, JA .
VISUAL NEUROSCIENCE, 1993, 10 (06) :1157-1169
[6]   Decision-making with multiple alternatives [J].
Churchland, Anne K. ;
Kiani, Roozbeh ;
Shadlen, Michael N. .
NATURE NEUROSCIENCE, 2008, 11 (06) :693-702
[7]   Reading population codes: a neural implementation of ideal observers [J].
Deneve, S ;
Latham, PE ;
Pouget, A .
NATURE NEUROSCIENCE, 1999, 2 (08) :740-745
[8]   Microstimulation of visual cortex affects the speed of perceptual decisions [J].
Ditterich, J ;
Mazurek, ME ;
Shadlen, MN .
NATURE NEUROSCIENCE, 2003, 6 (08) :891-898
[9]  
Eliasmith C, 2003, NEURAL ENG COMPUTATI
[10]   Similarity Effect and Optimal Control of Multiple-Choice Decision Making [J].
Furman, Moran ;
Wang, Xiao-Jing .
NEURON, 2008, 60 (06) :1153-1168