Stimulation of the alveolar macrophage respiratory burst by ADP causes selective glutathionylation of protein tyrosine phosphatase 1B

被引:66
作者
Rinna, Alessandra
Torres, Martine
Forman, Henry Jay
机构
[1] Univ Calif Merced, Sch Nat Sci, Merced, CA 95344 USA
[2] Univ So Calif, Saban Res Inst, Childrens Hosp, Los Angeles, CA USA
[3] Univ So Calif, Dept Pediat, Los Angeles, CA 90089 USA
关键词
protein tyrosine phosphatase 1B; hydrogen peroxide; glutathione; glutathione disulfide;
D O I
10.1016/j.freeradbiomed.2006.03.010
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
H2O2 produced by stimulation of the macrophage NADPH oxidase is involved both in bacterial killing and as a second messenger in these cells. Protein tyrosine phosphatases (PTPs) are targets for H2O2 signaling through oxidation of their catalytic cysteine, resulting in inhibition of their activity. Here, we show that, in the rat alveolar macrophage NR8383 cell line, H2O2 produced through the ADP-stimulated respiratory burst induces the formation of a disulfide bond between PTP1B and GSH that was detectable with an antibody to glutathione-protein complexes and was reversed by DTT addition. PTP1B glutathionylation was dependent on H2O2 as the presence of catalase at the time of ADP stimulation inhibited the formation of the conjugate. Interestingly, other PTPs, i.e., SHP-1 and SHP-2, did not undergo glutathionylation in response to ADP stimulation of the respiratory burst, although glutathionylation of these proteins could be shown by reaction with 25 mM glutathione disulfide in vitro. While previous studies have suggested the reversible oxidation of PTP1B during signaling or showed PTP1B glutathionylation in vitro, the present study directly demonstrates that physiological stimulation of H2O2 production results in PTP1B glutathionylation in intact cells, which may affect downstream signaling. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:86 / 91
页数:6
相关论文
共 38 条
[1]   PROTEIN-TYROSINE PHOSPHATASES TAKE-OFF [J].
BARFORD, D ;
JIA, ZC ;
TONKS, NK .
NATURE STRUCTURAL BIOLOGY, 1995, 2 (12) :1043-1053
[2]   Regulation of PTP1B via glutathionylation of the active site cysteine 215 [J].
Barrett, WC ;
DeGnore, JP ;
König, S ;
Fales, HM ;
Keng, YF ;
Zhang, ZY ;
Yim, MB ;
Chock, PB .
BIOCHEMISTRY, 1999, 38 (20) :6699-6705
[3]   NADPH oxidases: not just for leukocytes anymore! [J].
Bokoch, GM ;
Knaus, UG .
TRENDS IN BIOCHEMICAL SCIENCES, 2003, 28 (09) :502-508
[4]  
Brar SS, 2004, MOL CANCER THER, V3, P1049
[5]   Thiol oxidation of cell signaling proteins: Controlling an apoptotic equilibrium [J].
Cross, JV ;
Templeton, DJ .
JOURNAL OF CELLULAR BIOCHEMISTRY, 2004, 93 (01) :104-111
[6]   Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: Evidence for a sulfenic acid intermediate and implications for redox regulation [J].
Denu, JM ;
Tanner, KG .
BIOCHEMISTRY, 1998, 37 (16) :5633-5642
[7]   Free radicals in the physiological control of cell function [J].
Dröge, W .
PHYSIOLOGICAL REVIEWS, 2002, 82 (01) :47-95
[8]  
Dubé N, 2004, CELL CYCLE, V3, P550
[9]   Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene [J].
Elchebly, M ;
Payette, P ;
Michaliszyn, E ;
Cromlish, W ;
Collins, S ;
Loy, AL ;
Normandin, D ;
Cheng, A ;
Himms-Hagen, J ;
Chan, CC ;
Ramachandran, C ;
Gresser, MJ ;
Tremblay, ML ;
Kennedy, BP .
SCIENCE, 1999, 283 (5407) :1544-1548
[10]   Signal transduction by reactive oxygen species in non-phagocytic cells [J].
Finkel, T .
JOURNAL OF LEUKOCYTE BIOLOGY, 1999, 65 (03) :337-340