The Arabidopsis NPR1 Protein Is a Receptor for the Plant Defense Hormone Salicylic Acid

被引:644
作者
Wu, Yue [1 ]
Zhang, Di [1 ]
Chu, Jee Yan [1 ]
Boyle, Patrick [1 ]
Wang, Yong [2 ]
Brindle, Ian D. [2 ]
De Luca, Vincenzo [1 ]
Despres, Charles [1 ]
机构
[1] Brock Univ, Dept Biol Sci, St Catharines, ON L2S 3A1, Canada
[2] Brock Univ, Dept Chem, St Catharines, ON L2S 3A1, Canada
来源
CELL REPORTS | 2012年 / 1卷 / 06期
基金
加拿大创新基金会; 加拿大自然科学与工程研究理事会;
关键词
SYSTEMIC ACQUIRED-RESISTANCE; DISEASE RESISTANCE; BTB/POZ DOMAIN; DNA-BINDING; 2,6-DICHLOROISONICOTINIC ACID; TRANSCRIPTION FACTORS; ASCORBATE PEROXIDASE; HYDROGEN-PEROXIDE; GENE-EXPRESSION; HIGH-AFFINITY;
D O I
10.1016/j.celrep.2012.05.008
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Salicylic acid (SA) is an essential hormone in plant immunity, but its receptor has remained elusive for decades. The transcriptional coregulator NPR1 is central to the activation of SA-dependent defense genes, and we previously found that Cys(521) and Cys(529) of Arabidopsis NPR1's transactivation domain are critical for coactivator function. Here, we demonstrate that NPR1 directly binds SA, but not inactive structural analogs, with an affinity similar to that of other hormone-receptor interactions and consistent with in vivo Arabidopsis SA concentrations. Binding of SA occurs through Cys(521/529) via the transition metal copper. Mechanistically, our results suggest that binding of SA causes a conformational change in NPR1 that is accompanied by the release of the C-terminal transactivation domain from the N-terminal autoinhibitory BTB/POZ domain. While NPR1 is already known as a link between the SA signaling molecule and defense-gene activation, we now show that NPR1 is the receptor for SA.
引用
收藏
页码:639 / 647
页数:9
相关论文
共 33 条
[1]   Methyl Salicylate Production and Jasmonate Signaling Are Not Essential for Systemic Acquired Resistance in Arabidopsis [J].
Attaran, Elham ;
Zeier, Tatiana E. ;
Griebel, Thomas ;
Zeier, Juergen .
PLANT CELL, 2009, 21 (03) :954-971
[2]   THE POZ DOMAIN - A CONSERVED PROTEIN-PROTEIN INTERACTION MOTIF [J].
BARDWELL, VJ ;
TREISMAN, R .
GENES & DEVELOPMENT, 1994, 8 (14) :1664-1677
[3]   HYDROGEN-PEROXIDE DOES NOT FUNCTION DOWNSTREAM OF SALICYLIC-ACID IN THE INDUCTION OF PR PROTEIN EXPRESSION [J].
BI, YM ;
KENTON, P ;
MUR, L ;
DARBY, R ;
DRAPER, J .
PLANT JOURNAL, 1995, 8 (02) :235-245
[4]   Zinc fingers can act as Zn2+ sensors to regulate transcriptional activation domain function [J].
Bird, AJ ;
McCall, K ;
Kramer, M ;
Blankman, E ;
Winge, DR ;
Eide, DJ .
EMBO JOURNAL, 2003, 22 (19) :5137-5146
[5]   The BTB/POZ Domain of the Arabidopsis Disease Resistance Protein NPR1 Interacts with the Repression Domain of TGA2 to Negate Its Function [J].
Boyle, Patrick ;
Le Su, Errol ;
Rochon, Amanda ;
Shearer, Heather L. ;
Murmu, Jhadeswar ;
Chu, Jee Yan ;
Fobert, Pierre R. ;
Despres, Charles .
PLANT CELL, 2009, 21 (11) :3700-3713
[6]   The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats [J].
Cao, H ;
Glazebrook, J ;
Clarke, JD ;
Volko, S ;
Dong, XN .
CELL, 1997, 88 (01) :57-63
[7]   ACTIVE OXYGEN SPECIES IN THE INDUCTION OF PLANT SYSTEMIC ACQUIRED-RESISTANCE BY SALICYLIC-ACID [J].
CHEN, ZX ;
SILVA, H ;
KLESSIG, DF .
SCIENCE, 1993, 262 (5141) :1883-1886
[8]   2 INDUCERS OF PLANT DEFENSE RESPONSES, 2,6-DICHLOROISONICOTINIC ACID AND SALICYLIC-ACID, INHIBIT CATALASE ACTIVITY IN TOBACCO [J].
CONRATH, U ;
CHEN, ZX ;
RICIGLIANO, JR ;
KLESSIG, DF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (16) :7143-7147
[9]   A CENTRAL ROLE OF SALICYLIC-ACID IN PLANT-DISEASE RESISTANCE [J].
DELANEY, TP ;
UKNES, S ;
VERNOOIJ, B ;
FRIEDRICH, L ;
WEYMANN, K ;
NEGROTTO, D ;
GAFFNEY, T ;
GUTRELLA, M ;
KESSMANN, H ;
WARD, E ;
RYALS, J .
SCIENCE, 1994, 266 (5188) :1247-1250
[10]   The arabidopsis NPR1/NIM1 protein enhances the DNA binding activity of a subgroup of the TGA family of bZIP transcription factors [J].
Després, C ;
DeLong, C ;
Glaze, S ;
Liu, E ;
Fobert, PR .
PLANT CELL, 2000, 12 (02) :279-290