Free energy simulations of uncatalyzed DNA replication fidelity:: Structure and stability of T•G and dTTP•G terminal DNA mismatches flanked by a single dangling nucleotide

被引:66
作者
Bren, Urban
Martinek, Vaclav
Florian, Jan [1 ]
机构
[1] Loyola Univ, Dept Chem, Chicago, IL 60660 USA
[2] Natl Inst Chem, SI-1000 Ljubljana, Slovenia
[3] Charles Univ Prague, Fac Sci, Dept Biochem, Prague, Czech Republic
关键词
D O I
10.1021/jp060292b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A reference system for DNA replication fidelity was studied by free energy perturbation (FEP) and linear interaction energy ( LIE) methods. The studied system included a hydrated duplex DNA with the 5'-CG dangling end of the templating strand, and dCTP(4-)center dot Mg2+ or dTTP(4-)center dot Mg2+ inserted opposite the dangling G to form a correct (i.e., Watson-Crick) or incorrect ( i.e., wobble) base pair, respectively. The average distance between the 3'-terminal oxygen of the primer strand and the R-phosphorus of dNTP was found to be 0.2 angstrom shorter for the correct base pair than for the incorrect base pair. Binding of the incorrect dNTP was found to be disfavored by 0.4 kcal/mol relative to the correct dNTP. We estimated that improved binding and more near-attack configurations sampled by the correct base pair should translate in aqueous solution and in the absence of DNA polymerase into a six times faster rate for the incorporation of the correct dNTP into DNA. The accuracy of the calculated binding free energy difference was verified by examining the relative free energy for melting duplex DNA containing GC and GT terminal base pairs flanked by a 5' dangling C. The calculated LIE and FEP free energies of 1.7 and 1.1 kcal/mol, respectively, compared favorably with the experimental estimate of 1.4 kcal/mol obtained using the nearest neighbor parameters. To decompose the calculated free energies into additive electrostatic and van der Waals contributions and to provide a set of rigorous theoretical data for the parametrization of the LIE method, we suggested a variant of the FEP approach, for which we coined a binding-relevant free energy (BRFE) acronym. BRFE approach is characterized by its unique perturbation pathway and by its exclusion of the intramolecular energy of a rigid part of the ligand from the total potential energy.
引用
收藏
页码:10557 / 10566
页数:10
相关论文
共 50 条
[1]   Probing the effect of point mutations at protein-protein interfaces with free energy calculations [J].
Almlöf, M ;
Åqvist, J ;
Smalås, AO ;
Brandsdal, BO .
BIOPHYSICAL JOURNAL, 2006, 90 (02) :433-442
[2]   Binding affinity prediction with different force fields:: Examination of the linear interaction energy method [J].
Almlöf, M ;
Brandsdal, BO ;
Åqvist, J .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2004, 25 (10) :1242-1254
[3]   SOLVENT CONTRIBUTION TO THE FREE-ENERGY OF PROTEIN-LIGAND INTERACTIONS [J].
AMIDON, GL ;
PEARLMAN, RS ;
ANIK, ST .
JOURNAL OF THEORETICAL BIOLOGY, 1979, 77 (01) :161-170
[4]   NEW METHOD FOR PREDICTING BINDING-AFFINITY IN COMPUTER-AIDED DRUG DESIGN [J].
AQVIST, J ;
MEDINA, C ;
SAMUELSSON, JE .
PROTEIN ENGINEERING, 1994, 7 (03) :385-391
[5]   On the validity of electrostatic linear response in polar solvents [J].
Aqvist, J ;
Hansson, T .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (22) :9512-9521
[6]   Recent studies of nucleophilic, general-acid, and metal ion catalysis of phosphate diester hydrolysis [J].
Blaskó, A ;
Bruice, TC .
ACCOUNTS OF CHEMICAL RESEARCH, 1999, 32 (06) :475-484
[7]   THE MEANING OF COMPONENT ANALYSIS - DECOMPOSITION OF THE FREE-ENERGY IN TERMS OF SPECIFIC INTERACTIONS [J].
BORESCH, S ;
KARPLUS, M .
JOURNAL OF MOLECULAR BIOLOGY, 1995, 254 (05) :801-807
[8]   FREE-ENERGY SIMULATIONS - THE MEANING OF THE INDIVIDUAL CONTRIBUTIONS FROM A COMPONENT ANALYSIS [J].
BORESCH, S ;
ARCHONTIS, G ;
KARPLUS, M .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 1994, 20 (01) :25-33
[9]   DECOMPOSITION OF INTERACTION FREE-ENERGIES IN PROTEINS AND OTHER COMPLEX-SYSTEMS [J].
BRADY, GP ;
SHARP, KA .
JOURNAL OF MOLECULAR BIOLOGY, 1995, 254 (01) :77-85
[10]   Computational analysis of binding of P1 variants to trypsin [J].
Brandsdal, BO ;
Åqvist, J ;
Smalås, AO .
PROTEIN SCIENCE, 2001, 10 (08) :1584-1595