Universality class of trails in two dimensions

被引:17
作者
Guim, I
Blote, HWJ
Burkhardt, TW
机构
[1] TECH UNIV DELFT,LAB TECH NAT KUNDE,NL-2628 CJ DELFT,NETHERLANDS
[2] TEMPLE UNIV,DEPT PHYS,PHILADELPHIA,PA 19122
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1997年 / 30卷 / 02期
关键词
D O I
10.1088/0305-4470/30/2/009
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A trail is a walk on a lattice that may visit a site more than once but a bond at most once. We have carried out transfer-matrix studies of trails on the square lattice and of hybrid walks that interpolate between self-avoiding walks and trails. The results are in agreement with the same universal exponents as self-avoiding walks. However, the finite-size corrections are much larger than for self-avoiding walks. An explanation in terms of an irrelevant variable with scaling index y(u) = -11/12 is given.
引用
收藏
页码:413 / 421
页数:9
相关论文
共 26 条
[1]  
Barbar M N., 1983, Phase Transitions and Critical Phenomena, Vvol 8, pp 145
[2]   CRITICAL-BEHAVIOR AND CONFORMAL ANOMALY OF THE O(N) MODEL ON THE SQUARE LATTICE [J].
BLOTE, HWJ ;
NIENHUIS, B .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (09) :1415-1438
[3]   CRITICAL-BEHAVIOR OF THE TWO-DIMENSIONAL POTTS-MODEL WITH A CONTINUOUS NUMBER OF STATES - A FINITE SIZE SCALING ANALYSIS [J].
BLOTE, HWJ ;
NIGHTINGALE, MP .
PHYSICA A, 1982, 112 (03) :405-465
[4]  
BLOTE HWJ, 1996, IN PRESS
[5]  
CARDY JL, 1987, PHASE TRANSITIONS CR, V11, P55
[6]   ENUMERATION OF SELF-AVOIDING TRAILS ON A SQUARE LATTICE USING A TRANSFER-MATRIX TECHNIQUE [J].
CONWAY, AR ;
GUTTMANN, AJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (07) :1535-1552
[7]   ALGEBRAIC TECHNIQUES FOR ENUMERATING SELF-AVOIDING WALKS ON THE SQUARE LATTICE [J].
CONWAY, AR ;
ENTING, IG ;
GUTTMANN, AJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (07) :1519-1534
[8]  
De Gennes P.-G., 1979, SCALING CONCEPTS POL
[9]   PHENOMENOLOGICAL RENORMALIZATION OF THE SELF AVOIDING WALK IN 2 DIMENSIONS [J].
DERRIDA, B .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1981, 14 (01) :L5-L9
[10]  
DING E, 1996, COMMUN NONLINEAR SCI, V1, P21