Emissions from the laboratory combustion of wildland fuels:: Particle morphology and size

被引:173
作者
Chakrabarty, RK
Moosmüller, H
Garro, MA
Arnott, WP
Walker, J
Susott, RA
Babbitt, RE
Wold, CE
Lincoln, EN
Hao, WM
机构
[1] Nevada Syst Higher Educ, Desert Res Inst, Reno, NV 89512 USA
[2] US Forest Serv, USDA, Rocky Mt Res Stn, Fire Sci Lab, Missoula, MT 59807 USA
关键词
D O I
10.1029/2005JD006659
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
[1] The morphology of particles emitted by wildland fires contributes to their physical and chemical properties but is rarely determined. As part of a study at the USFS Fire Sciences Laboratory (FSL) investigating properties of particulate matter emitted by fires, we studied the size, morphology, and microstructure of particles emitted from the combustion of eight different wildland fuels (i.e., sagebrush, poplar wood, ponderosa pine wood, ponderosa pine needles, white pine needles, tundra cores, and two grasses) by scanning electron microscopy. Six of these fuels were dry, while two fuels, namely the tundra cores and one of the grasses, had high fuel moisture content. The particle images were analyzed for their density and textural fractal dimensions, their monomer and agglomerate number size distributions, and three different shape descriptors, namely aspect ratio, root form factor, and roundness. The particles were also probed with energy dispersive X-ray spectroscopy confirming their carbonaceous nature. The density fractal dimension of the agglomerates was determined using two different techniques, one taking into account the three-dimensional nature of the particles, yielding values between 1.67 and 1.83, the other taking into account only the two-dimensional orientation, yielding values between 1.68 and 1.74. The textural fractal dimension that describes the roughness of the boundary of the two-dimensional projection of the particle was between 1.10 and 1.19. The maximum length of agglomerates was proportional to a power a of their diameter and the proportionality constant and the three shape descriptors were parameterized as function of the exponent a.
引用
收藏
页数:16
相关论文
共 50 条
[1]   Reduction of tropical cloudiness by soot [J].
Ackerman, AS ;
Toon, OB ;
Stevens, DE ;
Heymsfield, AJ ;
Ramanathan, V ;
Welton, EJ .
SCIENCE, 2000, 288 (5468) :1042-1047
[2]  
[Anonymous], RES PRIOR AIRB PART
[3]   A recipe for image characterization of fractal-like aggregates [J].
Brasil, AM ;
Farias, TL ;
Carvalho, MG .
JOURNAL OF AEROSOL SCIENCE, 1999, 30 (10) :1379-1389
[4]  
Chandler C, 1983, Fire in Forestry. Volume I. Forest Fire Behavior and Effects
[5]   Particle emissions from laboratory combustion of wildland fuels:: In situ optical and mass measurements [J].
Chen, LWA ;
Moosmüller, H ;
Arnott, WP ;
Chow, JC ;
Watson, JG .
GEOPHYSICAL RESEARCH LETTERS, 2006, 33 (04)
[6]   Comprehensive laboratory measurements of biomass-burning emissions: 1. Emissions from Indonesian, African, and other fuels [J].
Christian, TJ ;
Kleiss, B ;
Yokelson, RJ ;
Holzinger, R ;
Crutzen, PJ ;
Hao, WM ;
Saharjo, BH ;
Ward, DE .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2003, 108 (D23)
[7]  
COLBECK I, 1992, SCI PROG, V76, P149
[8]   Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. Part 1: Theory [J].
DeCarlo, PF ;
Slowik, JG ;
Worsnop, DR ;
Davidovits, P ;
Jimenez, JL .
AEROSOL SCIENCE AND TECHNOLOGY, 2004, 38 (12) :1185-1205
[9]   The quantitative morphology of roadside and background urban aerosol in Plymouth, UK [J].
Dye, AL ;
Rhead, MM ;
Trier, CJ .
ATMOSPHERIC ENVIRONMENT, 2000, 34 (19) :3139-3148
[10]   Semi-volatile secondary organic aerosol in urban atmospheres: meeting a measurement challenge [J].
Eatough, DJ ;
Long, RW ;
Modey, WK ;
Eatough, NL .
ATMOSPHERIC ENVIRONMENT, 2003, 37 (9-10) :1277-1292