Isolation and characterization of size-sieved stem cells from human bone marrow

被引:233
作者
Hung, SC
Chen, NJ
Hsieh, SL
Li, H
Ma, HL
Lo, WH
机构
[1] Vet Gen Hosp, Dept Orthopaed & Traumatol, Taipei, Taiwan
[2] Natl Yang Ming Univ, Dept Microbiol & Immunol, Taipei 112, Taiwan
[3] Natl Yang Ming Univ, Immunol Res Ctr, Taipei 112, Taiwan
[4] Natl Yang Ming Univ, Sch Med, Dept Surg, Taipei 112, Taiwan
[5] Acad Sinica, Inst Mol Biol, Taipei, Taiwan
关键词
bone marrow stromal cells; mesenchymal stem cells; plastic-adherent cells; CD34 negative (CD34(-)); multipotential differentiation;
D O I
10.1634/stemcells.20-3-249
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Bone marrow mesenchymal stem cells (MSCs) have the capacity for renewal and the potential to differentiate into multiple lineages of mesenchymal tissues. In the laboratory, MSCs have the tendency to adhere to culture dish plastic and are characterized by fibroblastic morphology, but possess no specific markers to select them. To isolate and purify MSCs from bone marrow, we use a culture device-a plastic culture dish comprising a plate with 3-mum pores-to sieve out a homogeneous population of cells (termed size-sieved [SS] cells) from bone marrow aspirates. SS cells that adhered to the upper porous plate surface were a relatively homogeneous population as indicated by morphology and other criteria, such as surface markers. They had the capacity for self-renewal and the multilineage potential to form bone, fat, and cartilage, and satisfy the characteristics of MSCs. In addition, if all the cells from each passage had been plated and cultured in our defined conditions, over 10(14) SS cells would have been obtained from each 10-ml aspirate in 15 additional weeks of culture. This technically simple method leads to an efficient isolation and purification of cells with the characteristics of MSCs.
引用
收藏
页码:249 / 258
页数:10
相关论文
共 46 条
  • [1] Cell differentiation - Hepatocytes from nonhepatic adult stem cells
    Alison, MR
    Poulsom, R
    Jeffery, R
    Dhillon, AP
    Quaglia, A
    Jacob, J
    Novelli, M
    Prentice, G
    Williamson, J
    Wright, NA
    [J]. NATURE, 2000, 406 (6793) : 257 - 257
  • [2] From marrow to brain: Expression of neuronal phenotypes in adult mice
    Brazelton, TR
    Rossi, FMV
    Keshet, GI
    Blau, HM
    [J]. SCIENCE, 2000, 290 (5497) : 1775 - 1779
  • [3] Bruder SP, 1997, J CELL BIOCHEM, V64, P278, DOI 10.1002/(SICI)1097-4644(199702)64:2<278::AID-JCB11>3.0.CO
  • [4] 2-F
  • [5] CIRCULATING FIBROCYTES DEFINE A NEW LEUKOCYTE SUBPOPULATION THAT MEDIATES TISSUE-REPAIR
    BUCALA, R
    SPIEGEL, LA
    CHESNEY, J
    HOGAN, M
    CERAMI, A
    [J]. MOLECULAR MEDICINE, 1994, 1 (01) : 71 - 81
  • [6] MESENCHYMAL STEM-CELLS
    CAPLAN, AI
    [J]. JOURNAL OF ORTHOPAEDIC RESEARCH, 1991, 9 (05) : 641 - 650
  • [7] Cheng LZ, 2000, J CELL PHYSIOL, V184, P58, DOI 10.1002/(SICI)1097-4652(200007)184:1<58::AID-JCP6>3.0.CO
  • [8] 2-B
  • [9] Biology of bone marrow stroma
    Clark, BR
    Keating, A
    [J]. BONE MARROW TRANSPLANTATION: FOUNDATIONS FOR THE 21ST CENTURY, 1995, 770 : 70 - 78
  • [10] Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow
    Colter, DC
    Class, R
    DiGirolamo, CM
    Prockop, DJ
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (07) : 3213 - 3218