Over-expression of tobacco NtHSP70-1 contributes to drought-stress tolerance in plants

被引:125
作者
Cho, EK [1 ]
Hong, CB
机构
[1] Seoul Natl Univ, Inst Mol Biol & Genet, Seoul 151742, South Korea
[2] Seoul Natl Univ, Sch Biol Sci, Seoul 151742, South Korea
关键词
CaERD15; drought; NtHSP70-1; tobacco; transgenic plants; ABA;
D O I
10.1007/s00299-005-0093-2
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
HSP70, a heat shock protein, is a molecular chaperone responsive to various environmental stresses. Here, NtHSP70-1 (AY372069) was a drought-/ABA-inducible gene. We monitored the expression of CaERD15 (early responsive to dehydration, DQ267932) with exposing plants to progressive drought stress. Its activity was used as an indicator of water-deficit conditions. To analyze the protective role of HSP70, we obtained transgenic tobacco plants that constitutively expressed elevated levels of the tobacco HSP70, NtHSP70-1, as well as transgenic plants containing either the vector alone or else having NtHSP70-1 in the antisense orientation. Plants with enhanced levels of NtHSP70-1 in their transgenic sense lines exhibited tolerance to water stress. Under progressive drought, the amount of leaf NtHSP70-1 was correlated with maintenance of optimum water content, with contents being higher in the leaves of dehydrated transgenic sense plants than in those of either the control (vector-only) or the transgenic antisense plants. Moreover, the expression of CaERD15 was considerably reduced in tobacco plants that over-expressed NtHSP70-1. These results suggest that elevated levels of NtHSP70-1 can confer drought-stress tolerance.
引用
收藏
页码:349 / 358
页数:10
相关论文
共 52 条
[1]   Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling [J].
Abe, H ;
Urao, T ;
Ito, T ;
Seki, M ;
Shinozaki, K ;
Yamaguchi-Shinozaki, K .
PLANT CELL, 2003, 15 (01) :63-78
[2]   Survey on the PABC recognition motif PAM2 [J].
Albrecht, M ;
Lengauer, T .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2004, 316 (01) :129-138
[3]   Enhanced accumulation of BiP in transgenic plants confers tolerance to water stress [J].
Alvim, FC ;
Carolino, SMB ;
Cascardo, JCM ;
Nunes, CC ;
Martinez, CA ;
Otoni, WC ;
Fontes, EPB .
PLANT PHYSIOLOGY, 2001, 126 (03) :1042-1054
[4]  
An G., 1988, Plant Molecular Biology Manual, P1, DOI DOI 10.1007/978-94-009-0951-9
[5]  
BARTELS D, 1990, PLANTA, V181, P27, DOI 10.1007/BF00202321
[6]   ADAPTATIONS TO ENVIRONMENTAL STRESSES [J].
BOHNERT, HJ ;
NELSON, DE ;
JENSEN, RG .
PLANT CELL, 1995, 7 (07) :1099-1111
[7]   The role of calcium and activated oxygens as signals for controlling cross-tolerance [J].
Bowler, C ;
Fluhr, R .
TRENDS IN PLANT SCIENCE, 2000, 5 (06) :241-246
[8]  
BOYER EA, 1993, SCIENCE, V218, P443
[9]   Plant responses to water deficit [J].
Bray, EA .
TRENDS IN PLANT SCIENCE, 1997, 2 (02) :48-54
[10]   Molecular and physiological responses to water deficit in drought-tolerant and drought-sensitive lines of sunflower -: Accumulation of dehydrin transcripts correlates with tolerance [J].
Cellier, F ;
Conéjéro, G ;
Breitler, JC ;
Casse, F .
PLANT PHYSIOLOGY, 1998, 116 (01) :319-328