KEEL: a software tool to assess evolutionary algorithms for data mining problems

被引:1141
作者
Alcala-Fdez, J. [1 ]
Sanchez, L. [2 ]
Garcia, S. [1 ]
del Jesus, M. J. [3 ]
Ventura, S. [4 ]
Garrell, J. M. [5 ]
Otero, J. [2 ]
Romero, C. [4 ]
Bacardit, J. [6 ]
Rivas, V. M. [3 ]
Fernandez, J. C. [4 ]
Herrera, F. [1 ]
机构
[1] Univ Granada, Dept Comp Sci & Artificial Intelligence, E-18071 Granada, Spain
[2] Univ Oviedo, Dept Comp Sci, Gijon 33204, Spain
[3] Univ Jaen, Dept Comp Sci, Jaen 23071, Spain
[4] Univ Cordoba, Dept Numer Anal & Comp Sci, E-14071 Cordoba, Spain
[5] Univ Ramon Llull, Dept Comp Sci, Barcelona 08022, Spain
[6] Univ Nottingham, Dept Comp Sci & Informat Technol, Nottingham NG8 1BB, England
关键词
Computer-based education; Data mining; Evolutionary computation; Experimental design; Graphical programming; !text type='Java']Java[!/text; Knowledge extraction; Machine learning; METHODOLOGY; CLASSIFIERS; REDUCTION; INDUCTION; FRAMEWORK;
D O I
10.1007/s00500-008-0323-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces a software tool named KEEL which is a software tool to assess evolutionary algorithms for Data Mining problems of various kinds including as regression, classification, unsupervised learning, etc. It includes evolutionary learning algorithms based on different approaches: Pittsburgh, Michigan and IRL, as well as the integration of evolutionary learning techniques with different pre-processing techniques, allowing it to perform a complete analysis of any learning model in comparison to existing software tools. Moreover, KEEL has been designed with a double goal: research and educational.
引用
收藏
页码:307 / 318
页数:12
相关论文
共 59 条
  • [1] Hybrid learning models to get the interpretability-accuracy trade-off in fuzzy modeling
    Alcalá, R
    Alcalá-Fdez, J
    Casillas, J
    Cordón, O
    Herrera, F
    [J]. SOFT COMPUTING, 2006, 10 (09) : 717 - 734
  • [2] [Anonymous], 1996, GENETIC ALGORITHMS P
  • [3] [Anonymous], 2005, R LANG ENV STAT COMP
  • [4] Batista GEAPA, 2003, APPL ARTIF INTELL, V17, P519, DOI 10.1080/08839510390219309
  • [5] Domain of competence of XCS classifier system in complexity measurement space
    Bernadó-Mansilla, E
    Ho, TK
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2005, 9 (01) : 82 - 104
  • [6] BERTHOLD M, 2006, P 4 ANN IND SIM C WO
  • [7] Using evolutionary algorithms as instance selection for data reduction in KDD: An experimental study
    Cano, JR
    Herrera, F
    Lozano, M
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2003, 7 (06) : 561 - 575
  • [8] An extensible genetic algorithm framework for problem solving in a common environment
    Chuang, AS
    Wu, FL
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2000, 15 (01) : 269 - 275
  • [9] Solving electrical distribution problems using hybrid evolutionary data analysis techniques
    Cordón, O
    Herrera, F
    Sánchez, L
    [J]. APPLIED INTELLIGENCE, 1999, 10 (01) : 5 - 24
  • [10] Cordón O, 1999, INT J INTELL SYST, V14, P1123, DOI 10.1002/(SICI)1098-111X(199911)14:11<1123::AID-INT4>3.0.CO