Flexible polyimide probes with microelectrodes and embedded microfluidic channels for simultaneous drug delivery and multi-channel monitoring of bioelectric activity

被引:129
作者
Metz, S
Bertsch, A
Bertrand, D
Renaud, P
机构
[1] Swiss Fed Inst Technol, EPFL, STI, IMM,Lab Microsyst, CH-1015 Lausanne, Switzerland
[2] CMU, Dept Physiol, CH-1211 Geneva, Switzerland
关键词
microelectrode; microfluidic; recording; stimulation; delivery; probing;
D O I
10.1016/j.bios.2003.11.021
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
The study of intracellular communication requires devices that can not only monitor the bioelectric activity, but also control and observe the biochemical environment at the cellular level. This paper reports on the development and characterisation of implantable polyimide microprobes that allow simultaneous, selective chemical delivery/probing and multi-channel recording/stimulation of bioelectric activity. The key component of the system is a flexible polyimide substrate with embedded microchannels that is batch-fabricated combining polyimide micromachining and a lamination technique. The devices provide platinum microelectrodes on both sides of the polyimide substrate with an active surface between 20 mum x 20 mum and 50 mum x 50 mum. The embedded microchannels permit highly localised drug delivery or probing at the tip of the device via channel outlets adjacent to the microelectrodes. The microelectrodes were characterised by electrical impedance spectroscopy and the microchannels were studied in microflow experiments. Two different fluid delivery schemes were explored in two different designs. The first device type consists of a simple combination of microchannels and microelectrodes on one substrate. Liquids are ejected at the tip of the device by pressure injection techniques. The second device was inspired by the so-called U-tube concept allowing for highly localised delivery of controlled amounts of liquids in the picoliters range. Thus, the influence of chemical compounds on the electrical activity of cells can be studied with high temporal and spatial resolution. The flexible, implantable devices can be used for studying the chemical and electrical information exchange and communication of cells in in vivo and in vitro experiments. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:1309 / 1318
页数:10
相关论文
共 23 条
[1]   FUNCTIONAL-PROPERTIES OF THE NICOTINIC AND GLUTAMATERGIC RECEPTORS [J].
ALBUQUERQUE, EX ;
COSTA, ACS ;
ALKONDON, M ;
SHAW, KP ;
RAMOA, AS ;
ARACAVA, Y .
JOURNAL OF RECEPTOR RESEARCH, 1991, 11 (1-4) :603-625
[2]   A flexible micromachined electrode array for a cochlear prosthesis [J].
Bell, TE ;
Wise, KD ;
Anderson, DJ .
SENSORS AND ACTUATORS A-PHYSICAL, 1998, 66 (1-3) :63-69
[3]   A FLEXIBLE PERFORATED MICROELECTRODE ARRAY FOR EXTENDED NEURAL RECORDINGS [J].
BOPPART, SA ;
WHEELER, BC ;
WALLACE, CS .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1992, 39 (01) :37-42
[4]   Biotechnology at low Reynolds numbers [J].
Brody, JP ;
Yager, P ;
Goldstein, RE ;
Austin, RH .
BIOPHYSICAL JOURNAL, 1996, 71 (06) :3430-3441
[5]   A multichannel neural probe for selective chemical delivery at the cellular level [J].
Chen, JK ;
Wise, KD ;
Hetke, JF ;
Bledsoe, SC .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1997, 44 (08) :760-769
[6]   ANODIC-DISSOLUTION OF METALS AT HIGH-RATES [J].
DATTA, M .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 1993, 37 (02) :207-226
[7]   ''Character talk'' and public policy [J].
Gross, E .
AFFILIA-JOURNAL OF WOMEN AND SOCIAL WORK, 1997, 12 (01) :5-9
[8]   A RECEPTOR FOR PROTONS IN THE NERVE-CELL MEMBRANE [J].
KRISHTAL, OA ;
PIDOPLICHKO, VI .
NEUROSCIENCE, 1980, 5 (12) :2325-2327
[9]   SIMULTANEOUS SINGLE-CELL RECORDING AND MICRODIALYSIS WITHIN THE SAME BRAIN SITE IN FREELY BEHAVING RATS - A NOVEL NEUROBIOLOGICAL METHOD [J].
LUDVIG, N ;
POTTER, PE ;
FOX, SE .
JOURNAL OF NEUROSCIENCE METHODS, 1994, 55 (01) :31-40
[10]   Polyimide-based microfluidic devices [J].
Metz, S ;
Holzer, R ;
Renaud, P .
LAB ON A CHIP, 2001, 1 (01) :29-34