Universal continuous-variable quantum computation: Requirement of optical nonlinearity for photon counting

被引:129
作者
Bartlett, SD [1 ]
Sanders, BC
机构
[1] Macquarie Univ, Dept Phys, Sydney, NSW 2109, Australia
[2] Macquarie Univ, Ctr Adv Comp Algorithms & Crystallog, Sydney, NSW 2109, Australia
[3] Stanford Univ, Edward L Ginzton Lab, JST, ICORP,Quantum Entanglement Project, Stanford, CA 94305 USA
来源
PHYSICAL REVIEW A | 2002年 / 65卷 / 04期
关键词
D O I
10.1103/PhysRevA.65.042304
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Although universal continuous-variable quantum computation cannot be achieved via linear optics (including squeezing), homodyne detection, and feed-forward, inclusion of ideal photon-counting measurements overcomes this obstacle. These measurements are sometimes described by arrays of beam splitters to distribute the photons across several modes. We show that such a scheme cannot be used to implement ideal photon counting and that such measurements necessarily involve nonlinear evolution. However, this requirement of nonlinearity can be moved "off-line," thereby permitting universal continuous-variable quantum computation with linear optics.
引用
收藏
页数:5
相关论文
共 19 条
[1]  
[Anonymous], 2009, Quantum computation and quantum information, DOI DOI 10.1119/1.1463744
[2]   Efficient classical simulation of continuous variable quantum information processes [J].
Bartlett, SD ;
Sanders, BC ;
Braunstein, SL ;
Nemoto, K .
PHYSICAL REVIEW LETTERS, 2002, 88 (09) :4-979044
[3]   CONTINUUM FIELDS IN QUANTUM OPTICS [J].
BLOW, KJ ;
LOUDON, R ;
PHOENIX, SJD ;
SHEPHERD, TJ .
PHYSICAL REVIEW A, 1990, 42 (07) :4102-4114
[4]   COHERENT STATES IN A FINITE-DIMENSIONAL BASIS - THEIR PHASE PROPERTIES AND RELATIONSHIP TO COHERENT STATES OF LIGHT [J].
BUZEK, V ;
WILSONGORDON, AD ;
KNIGHT, PL ;
LAI, WK .
PHYSICAL REVIEW A, 1992, 45 (11) :8079-8094
[5]   PHOTON STATISTICS OF 2-MODE SQUEEZED STATES AND INTERFERENCE IN 4-DIMENSIONAL PHASE-SPACE [J].
CAVES, CM ;
ZHU, C ;
MILBURN, GJ ;
SCHLEICH, W .
PHYSICAL REVIEW A, 1991, 43 (07) :3854-3861
[6]   SIMPLE QUANTUM COMPUTER [J].
CHUANG, IL ;
YAMAMOTO, Y .
PHYSICAL REVIEW A, 1995, 52 (05) :3489-3496
[7]   Encoding a qubit in an oscillator [J].
Gottesman, D ;
Kitaev, A ;
Preskill, J .
PHYSICAL REVIEW A, 2001, 64 (01) :123101-1231021
[8]   THEORY OF ELECTROMAGNETIC FIELD MEASUREMENT + PHOTOELECTRON COUNTING [J].
KELLEY, PL ;
KLEINER, WH .
PHYSICAL REVIEW, 1964, 136 (2A) :A316-+
[9]   Multiphoton detection using visible light photon counter [J].
Kim, JS ;
Takeuchi, S ;
Yamamoto, Y ;
Hogue, HH .
APPLIED PHYSICS LETTERS, 1999, 74 (07) :902-904
[10]   A scheme for efficient quantum computation with linear optics [J].
Knill, E ;
Laflamme, R ;
Milburn, GJ .
NATURE, 2001, 409 (6816) :46-52