Existence of approximate controls for a semilinear Laplace equation

被引:5
作者
Bodart, O
机构
[1] MAPMO, URA CNRS 1903, Université d'Orléan, 45067 Orleans Cedex 2
[2] Laboratory of Scientific Computing, University of Jyväskylä
关键词
D O I
10.1088/0266-5611/12/1/003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An approximate identification result fora semilinear Laplace equation is given. To achieve this goal the problem is reformulated into approximate controllability problem. Some results are already known in the linear case. The framework of the paper consists of the combination of unique continuation properties, convex analysis methods and the application of a fixed point theorem.
引用
收藏
页码:27 / 33
页数:7
相关论文
共 10 条
  • [1] BODART O, UNPUB
  • [2] BODART O, 1995, IN PRESS J MATH ANAL
  • [3] Ekeland I., 1976, CONVEX ANAL VARIATIO
  • [4] FABRE C, 1995, IN PRESS P A R SOC E
  • [5] Hadamard J, 1932, Le probleme de Cauchy et les equations aux derivees partielles lineaires hyperboliques
  • [6] Lions J.-L., 1971, OPTIMAL CONTROL SYST
  • [7] Lions J-L., 1972, NONHOMOGENEOUS BOUND
  • [8] EXACT CONTROLLABILITY, STABILIZATION AND PERTURBATIONS FOR DISTRIBUTED SYSTEMS
    LIONS, JL
    [J]. SIAM REVIEW, 1988, 30 (01) : 1 - 68
  • [9] LUCE R, 1991, THESIS U TECHNOLOGIE
  • [10] Zuazua E., 1991, NONLINEAR PARTIAL DI, VX, P357