Three-dimensional stability of elliptical vortex columns in external strain flows

被引:53
作者
Bayly, BJ
Holm, DD
Lifschitz, A
机构
[1] LOS ALAMOS NATL LAB, CTR NONLINEAR STUDIES, LOS ALAMOS, NM 87545 USA
[2] LOS ALAMOS NATL LAB, DIV THEORET, LOS ALAMOS, NM 87545 USA
[3] UNIV ILLINOIS, DEPT MATH, CHICAGO, IL 60607 USA
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 1996年 / 354卷 / 1709期
关键词
D O I
10.1098/rsta.1996.0036
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Kirchhoff-Kida family of elliptical vortex columns in flows with uniform strain and rotation displays a rich variety of dynamical behaviours, even in a purely two-dimensional setting. In this paper, we address the stability of these columns with respect to three-dimensional perturbations via the geometrical optics method. In the case when the external strain is equal to zero, the analysis reduces to the stability of a steady elliptical vortex in a rotating frame. When the external strain is non-zero, the stability analysis reduces to the theory of a Schrodinger equation with quasi-periodic potential. We present stability results for a variety of different Kirchhoff-Kida flows. The vortex columns are typically unstable except when the interior vorticity is approximately the negative of the background vorticity, so that the flow in the inertial frame is nearly a potential flow.
引用
收藏
页码:895 / 926
页数:32
相关论文
共 58 条
[1]   NONLINEAR STABILITY ANALYSIS OF STRATIFIED FLUID EQUILIBRIA [J].
ABARBANEL, HDI ;
HOLM, DD ;
MARSDEN, JE ;
RATIU, TS .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1986, 318 (1543) :349-409
[2]  
[Anonymous], 1957, HYDRODYNAMICS
[3]  
Arnold V. I., 1978, Mathematical methods of classical mechanics
[4]   3-DIMENSIONAL INSTABILITY OF ELLIPTIC FLOW [J].
BAYLY, BJ .
PHYSICAL REVIEW LETTERS, 1986, 57 (17) :2160-2163
[5]   3-DIMENSIONAL CENTRIFUGAL-TYPE INSTABILITIES IN INVISCID TWO-DIMENSIONAL FLOWS [J].
BAYLY, BJ .
PHYSICS OF FLUIDS, 1988, 31 (01) :56-64
[6]  
BAYLY BJ, 1989, MATH ASPECTS VORTEX, P50
[7]  
BAYLY BJ, 1987, NONLINEAR WAVE INTER, P71
[8]  
BORG G, 1944, ARK MAT ASTR FYS A, V31, P1
[9]   TRIGONOMETRIC COMPONENTS OF A FREQUENCY-MODULATED WAVE [J].
CAMBI, E .
PROCEEDINGS OF THE INSTITUTE OF RADIO ENGINEERS, 1948, 36 (01) :42-49
[10]  
Chandrasekhar S., 1981, HYDRODYNAMIC HYDROMA