Glutamate release from astrocytes as a non-synaptic mechanism for neuronal synchronization in the hippocampus

被引:72
作者
Carmignoto, G
Fellin, T
机构
[1] Univ Padua, Ist CNR Neurosci, I-35121 Padua, Italy
[2] Univ Padua, Dipartimento Sci Biomed Sperimentali, I-35121 Padua, Italy
关键词
glia; glutamate; synchrony; epilepsy; calcium; NMDA;
D O I
10.1016/j.jphysparis.2005.12.008
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Synchronization of activity of anatomically distributed groups of neurons represents a fundamental event in the processing of information in the brain. While this phenomenon is believed to result from dynamic interactions within the neuronal circuitry, how exactly populations of neurons become synchronized remains largely to be clarified. We propose that astrocytes are directly involved in the generation of neuronal synchrony in the hippocampus. By using a combination of experimental approaches in hippocampal slice preparations, including patch-clamp recordings and confocal microscopy calcium imaging, we studied the effect on CAI pyramidal neurons of glutamate released from astrocytes upon various stimuli that trigger Ca2+ elevations in these glial cells, including Schaffer collateral stimulation. We found that astrocytic glutamate evokes synchronous, slow inward currents (SICs) and Ca2+ elevations in CAI pyramidal neurons by acting preferentially, if not exclusively, on extrasynaptic NMDA receptors. Due to desensitization, AMPA receptors were not activated by astrocytic glutamate unless cyclothiazide was present. In the virtual absence of extracellular Mg, glutamate released from astrocytes was found to evoke, in paired recordings, highly synchronous SICs from two CAI pyramidal neurons and, in Ca2+ imaging experiments, Ca2+ elevations that occurred synchronously in domains composed of 2-12 CAI neurons. In the presence of extracellular Mg2+ (1 mM), synchronous SICs in two neurons as well as synchronous Ca2+ elevations in neuronal domains were still observed, although with a reduced frequency. Our results reveal a functional link between astrocytic glutamate and extrasynaptic NMDA receptors that contributes to the overall dynamics of neuronal synchrony. Our observations also raise a series of questions on possible roles of this astrocyte-to-neuron signaling in pathological changes in the hippocampus such as excitotoxic neuronal damage or the generation of epileptiform activity. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:98 / 102
页数:5
相关论文
共 36 条
[1]   Glutamate released from glial cells synchronizes neuronal activity in the hippocampus [J].
Angulo, MC ;
Kozlov, AS ;
Charpak, S ;
Audinat, E .
JOURNAL OF NEUROSCIENCE, 2004, 24 (31) :6920-6927
[2]   Tripartite synapses: glia, the unacknowledged partner [J].
Araque, A ;
Parpura, V ;
Sanzgiri, RP ;
Haydon, PG .
TRENDS IN NEUROSCIENCES, 1999, 22 (05) :208-215
[3]  
Araque A, 1998, J NEUROSCI, V18, P6822
[4]   Glutamate-dependent astrocyte modulation of synaptic transmission between cultured hippocampal neurons [J].
Araque, A ;
Parpura, V ;
Sanzgiri, RP ;
Haydon, PG .
EUROPEAN JOURNAL OF NEUROSCIENCE, 1998, 10 (06) :2129-2142
[5]   Glutamate transporter currents in Bergmann glial cells follow the time course of extrasynaptic glutamate [J].
Bergles, DE ;
Dzubay, JA ;
Jahr, CE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (26) :14821-14825
[6]  
Bergles DE, 1998, J NEUROSCI, V18, P7709
[7]   Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate [J].
Bezzi, P ;
Gundersen, V ;
Galbete, JL ;
Seifert, G ;
Steinhäuser, C ;
Pilati, E ;
Volterra, A .
NATURE NEUROSCIENCE, 2004, 7 (06) :613-620
[8]   Prostaglandins stimulate calcium-dependent glutamate release in astrocytes [J].
Bezzi, P ;
Carmignoto, G ;
Pasti, L ;
Vesce, S ;
Rossi, D ;
Rizzini, BL ;
Pozzan, T ;
Volterra, A .
NATURE, 1998, 391 (6664) :281-285
[9]   Reciprocal communication systems between astrocytes and neurones [J].
Carmignoto, G .
PROGRESS IN NEUROBIOLOGY, 2000, 62 (06) :561-581
[10]   GLUTAMATE NEUROTOXICITY AND DISEASES OF THE NERVOUS-SYSTEM [J].
CHOI, DW .
NEURON, 1988, 1 (08) :623-634