Optical properties of planar colloidal crystals: Dynamical diffraction and the scalar wave approximation

被引:119
作者
Mittleman, DM
Bertone, JF
Jiang, P
Hwang, KS
Colvin, VL
机构
[1] Rice Univ, Dept Elect & Comp Engn, Houston, TX 77005 USA
[2] Rice Univ, Dept Chem, Houston, TX 77005 USA
关键词
D O I
10.1063/1.479276
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present a quantitative comparison between two analytic theories for the propagation of electromagnetic waves in periodic dielectric structures. These theories have both been used extensively in the modeling of optical spectra of colloidal crystals exhibiting photonic band gap behavior. We demonstrate that dynamical diffraction theory is equivalent to the scalar wave approximation, in the limit of small dielectric contrast. This equivalence allows us to place quantitative limits on the validity of dynamical diffraction, relative to the predictions of the more accurate scalar wave theory. We also note that dynamical diffraction is often applied with boundary conditions which neglect the strong interference between the incident and diffracted waves within the periodic medium. These boundary conditions lead to expressions for the transmission spectrum which cannot be generalized to the case of normal-incidence propagation. We provide a corrected form for these expressions, and use them in comparisons with experimental spectra. Excellent agreement between theory and experiment is obtained for the widths of optical stop bands, for both positive and negative values of the dielectric contrast. These are among the first quantitative comparisons between theoretical and experimental optical spectra of colloidal photonic crystals. (C) 1999 American Institute of Physics. [S0021-9606(99)70725-7].
引用
收藏
页码:345 / 354
页数:10
相关论文
共 37 条
[1]   DYNAMICAL DIFFRACTION OF X RAYS BY PERFECT CRYSTALS [J].
BATTERMAN, BW ;
COLE, H .
REVIEWS OF MODERN PHYSICS, 1964, 36 (03) :681-&
[2]  
BERTONE JF, UNPUB PHYS REV LETT
[3]   Photonic band gap phenomenon and optical properties of artificial opals [J].
Bogomolov, VN ;
Gaponenko, SV ;
Germanenko, IN ;
Kapitonov, AM ;
Petrov, EP ;
Gaponenko, NV ;
Prokofiev, AV ;
Ponyavina, AN ;
Silvanovich, NI ;
Samoilovich, SM .
PHYSICAL REVIEW E, 1997, 55 (06) :7619-7625
[4]   New fabrication techniques for high quality photonic crystals [J].
Cheng, CC ;
Scherer, A ;
Tyan, RC ;
Fainman, Y ;
Witzgall, G ;
Yablonovitch, E .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1997, 15 (06) :2764-2767
[5]   EFFECTIVE DIELECTRIC-CONSTANT OF PERIODIC COMPOSITE STRUCTURES [J].
DATTA, S ;
CHAN, CT ;
HO, KM ;
SOUKOULIS, CM .
PHYSICAL REVIEW B, 1993, 48 (20) :14936-14943
[6]   Fabrication of photonic crystals by deep x-ray lithography [J].
Feiertag, G ;
Ehrfeld, W ;
Freimuth, H ;
Kolle, H ;
Lehr, H ;
Schmidt, M ;
Sigalas, MM ;
Soukoulis, CM ;
Kiriakidis, G ;
Pedersen, T ;
Kuhl, J ;
Koenig, W .
APPLIED PHYSICS LETTERS, 1997, 71 (11) :1441-1443
[7]  
Guinier A., 1963, XRAY DIFFRACTION CRY
[8]   A BRIEF REVIEW OF THEORETICAL RESULTS FOR PHOTONIC BAND STRUCTURES [J].
HAUS, JW .
JOURNAL OF MODERN OPTICS, 1994, 41 (02) :195-207
[9]   THEORY OF SCALAR WAVE-PROPAGATION IN PERIODIC COMPOSITES - A K-CENTER-DOT-P APPROACH [J].
HUI, PM ;
LEE, WM ;
JOHNSON, NF .
SOLID STATE COMMUNICATIONS, 1994, 91 (01) :65-69
[10]  
James R. W., 1948, OPTICAL PRINCIPLES D