Predictive Inference and Scientific Reproducibility

被引:32
作者
Billheimer, Dean [1 ]
机构
[1] Univ Arizona, Dept Biostat & Epidemiol, Tucson, AZ 85721 USA
关键词
Observables; Prediction; Predictive distribution; Scientific inference;
D O I
10.1080/00031305.2018.1518270
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Most statistical analyses use hypothesis tests or estimation about parameters to form inferential conclusions. I think this is noble, but misguided. The point of view expressed here is that observables are fundamental, and that the goal of statistical modeling should be to predict future observations, given the current data and other relevant information. Further, the prediction of future observables provides multiple advantages to practicing scientists, and to science in general. These include an interpretable numerical summary of a quantity of direct interest to current and future researchers, a calibrated prediction of what's likely to happen in future experiments, a prediction that can be either "corroborated" or "refuted" through experimentation, and avoidance of inference about parameters; quantities that exists only as convenient indices of hypothetical distributions. Finally, the predictive probability of a future observable can be used as a standard for communicating the reliability of the current work, regardless of whether confirmatory experiments are conducted. Adoption of this paradigm would improve our rigor for scientific accuracy and reproducibility by shifting our focus from "finding differences" among hypothetical parameters to predicting observable events based on our current scientific understanding.
引用
收藏
页码:291 / 295
页数:5
相关论文
共 12 条
[1]  
Aitchison J., 1975, Statistical Prediction Analysis
[2]   A new perspective on priors for generalized linear models [J].
Bedrick, EJ ;
Christensen, R ;
Johnson, W .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1996, 91 (436) :1450-1460
[3]   Redefine statistical significance [J].
Benjamin, Daniel J. ;
Berger, James O. ;
Johannesson, Magnus ;
Nosek, Brian A. ;
Wagenmakers, E. -J. ;
Berk, Richard ;
Bollen, Kenneth A. ;
Brembs, Bjoern ;
Brown, Lawrence ;
Camerer, Colin ;
Cesarini, David ;
Chambers, Christopher D. ;
Clyde, Merlise ;
Cook, Thomas D. ;
De Boeck, Paul ;
Dienes, Zoltan ;
Dreber, Anna ;
Easwaran, Kenny ;
Efferson, Charles ;
Fehr, Ernst ;
Fidler, Fiona ;
Field, Andy P. ;
Forster, Malcolm ;
George, Edward I. ;
Gonzalez, Richard ;
Goodman, Steven ;
Green, Edwin ;
Green, Donald P. ;
Greenwald, Anthony ;
Hadfield, Jarrod D. ;
Hedges, Larry V. ;
Held, Leonhard ;
Ho, Teck Hua ;
Hoijtink, Herbert ;
Hruschka, Daniel J. ;
Imai, Kosuke ;
Imbens, Guido ;
Ioannidis, John P. A. ;
Jeon, Minjeong ;
Jones, James Holland ;
Kirchler, Michael ;
Laibson, David ;
List, John ;
Little, Roderick ;
Lupia, Arthur ;
Machery, Edouard ;
Maxwell, Scott E. ;
McCarthy, Michael ;
Moore, Don ;
Morgan, Stephen L. .
NATURE HUMAN BEHAVIOUR, 2018, 2 (01) :6-10
[4]  
Briggs W., 2016, Uncertainty: The soul of modeling, probability & statistics
[5]   Prediction in several conventional contexts [J].
Clarke, Bertrand ;
Clarke, Jennifer .
STATISTICS SURVEYS, 2012, 6 :1-73
[6]  
de Finetti B, 2017, THEORY PROBABILITY, VII
[7]  
de Finetti B, 2017, THEORY PROBABILITY
[8]  
De Finetti Bruno, 1937, Ann. Inst. Henri Poincare, V7, P1
[9]  
Geisser S., 1993, PREDICTIVE INFERENCE
[10]  
Geisser S., 1988, Bayesian Statistics 3, P147