Theoretical study on the stability of low-spin hydridomethyl complexes of the first-row transition metal cations

被引:21
作者
Hendrickx, M
Ceulemans, M
Gong, K
Vanquickenborne, L
机构
[1] Department of Chemistry, University of Leuven, B-3001 Heverlee-leuven
关键词
D O I
10.1021/jp962754z
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Theoretical calculations have been performed in order to study the stability of the low-spin hydridomethyl complexes HMCH(3)(+) for the first-row transition metals (M(+) = Sc+-Cu+). Originally experimental results have been rationalized by assuming a low-spin hydridomethyl complex as a stable intermediate in the reactions of methane with singly charged metal cations. Recently, theoretical studies showed that for some late transition metals of the first row (Fe+ and Co+) no stable low-spin insertion product could be located on the potential energy surface. For the early elements of this row (Sc+-V+) the experimental cross section ratios sigma(MH(+))/sigma(MCH(3)(+)) indicate that the elimination reactions for these cations proceed via a statistically behaved intermediate. Our CASPT2 calculations indeed confirm a stable hydridomethyl complex for these cations. The reason for the stability of the insertion complexes could be traced back to the relative position of the lowest lying low-spin s(0)d(n) state and the lowest lying low-spin s(1)d(n-1) state in the electronic spectrum of the corresponding free transition metal cations. Further, an analysis of the wave function clearly reveals a correlation between the extent of the participation of the 4s orbital in the metal-ligand bonds and the experimentally observed dominance of the H-2 elimination over the other elimination reactions for the cations Sc+ to Cr+. An explanation in terms of the frontier orbital approach is given.
引用
收藏
页码:2465 / 2470
页数:6
相关论文
共 27 条
[1]  
ANDERSON K, 1994, MOLCAS VERSION 3
[2]   2ND-ORDER PERTURBATION-THEORY WITH A COMPLETE ACTIVE SPACE SELF-CONSISTENT FIELD REFERENCE FUNCTION [J].
ANDERSSON, K ;
MALMQVIST, PA ;
ROOS, BO .
JOURNAL OF CHEMICAL PHYSICS, 1992, 96 (02) :1218-1226
[3]   2ND-ORDER PERTURBATION-THEORY WITH A CASSCF REFERENCE FUNCTION [J].
ANDERSSON, K ;
MALMQVIST, PA ;
ROOS, BO ;
SADLEJ, AJ ;
WOLINSKI, K .
JOURNAL OF PHYSICAL CHEMISTRY, 1990, 94 (14) :5483-5488
[4]   METHANE ACTIVATION BY V+ - ELECTRONIC AND TRANSLATIONAL ENERGY-DEPENDENCE [J].
ARISTOV, N ;
ARMENTROUT, PB .
JOURNAL OF PHYSICAL CHEMISTRY, 1987, 91 (24) :6178-6188
[5]   THE CHEMISTRY OF ATOMIC TRANSITION-METAL IONS - INSIGHT INTO FUNDAMENTAL-ASPECTS OF ORGANOMETALLIC CHEMISTRY [J].
ARMENTROUT, PB ;
BEAUCHAMP, JL .
ACCOUNTS OF CHEMICAL RESEARCH, 1989, 22 (09) :315-321
[6]   THEORETICAL-STUDIES OF THE 1ST-ROW AND 2ND-ROW TRANSITION-METAL METHYLS AND THEIR POSITIVE-IONS [J].
BAUSCHLICHER, CW ;
LANGHOFF, SR ;
PARTRIDGE, H ;
BARNES, LA .
JOURNAL OF CHEMICAL PHYSICS, 1989, 91 (04) :2399-2411
[7]   REACTION OF 2ND-ROW TRANSITION-METAL CATIONS WITH METHANE [J].
BLOMBERG, MRA ;
SIEGBAHN, PEM ;
SVENSSON, M .
JOURNAL OF PHYSICAL CHEMISTRY, 1994, 98 (08) :2062-2071
[9]   TRANSLATIONAL AND ELECTRONIC-ENERGY DEPENDENCE OF CHROMIUM ION REACTIONS WITH METHANE [J].
GEORGIADIS, R ;
ARMENTROUT, PB .
JOURNAL OF PHYSICAL CHEMISTRY, 1988, 92 (25) :7067-7074
[10]   THE POTENTIAL-ENERGY SURFACE FOR ACTIVATION OF METHANE BY CO+ - AN EXPERIMENTAL-STUDY [J].
HAYNES, CL ;
CHEN, YM ;
ARMENTROUT, PB .
JOURNAL OF PHYSICAL CHEMISTRY, 1995, 99 (22) :9110-9117