An in situ study of the annealing behaviour of BiSCCO Ag tapes

被引:31
作者
Frello, T
Poulsen, HF [1 ]
Andersen, LG
Andersen, NH
Bentzon, MD
Schmidberger, J
机构
[1] Riso Natl Lab, Mat Res Dept, DK-4000 Roskilde, Denmark
[2] Riso Natl Lab, Condensed Matter Phys & Chem Dept, DK-4000 Roskilde, Denmark
[3] Nord Superconductor Technol, DK-2605 Brondby, Denmark
[4] DESY, Hamburger Synchrotronstrahlungslab Hasylab, D-22603 Hamburg, Germany
关键词
D O I
10.1088/0953-2048/12/5/309
中图分类号
O59 [应用物理学];
学科分类号
摘要
The phase transformations and structural changes occurring during initial heating and annealing of an Ag-clad high-T-c superconducting tape of the (Bi, Pb)(2)Sr2Ca2Cu3Ox type are investigated. The annealing takes place in air at an operating temperature of 835 degrees C. Using x-ray diffraction with 100 keV photons from a synchrotron source the concentration, stoichiometry and texture of the dominant phases are monitored in situ during the transformation of BiSCCO from (Bi, Pb)(2)Sr2CaCu2Ox, (2212) to (Bi, Pb)(2)Sr2Ca2Cu3Ox, (2223). In addition, information on grain size and residual strain is obtained. During heating the (Ca, Sr)(2)PbO4 additive decomposes between 700 degrees C and 820 degrees C. Simultaneously, the residual strain in the 2212 grains is relieved and the c-axis alignment of the grains is substantially improved. Moreover, the Pb content of the 2212 structure increases continuously. We interpret these results as being related to a temperature-dependent solubility limit of Pb in 2212, leading to a substantial grain growth of the phase. Above 812 degrees C 2212 partly decomposes to form (Ca, Sr)(2)CuO3 and a liquid. At the operating temperature 2212 and (Ca, Sr)(2)CuO3 react with the liquid to form 2223. During the conversion the 2212 lattice expands, indicating that the remaining 2212 grains contain less and less Pb. The final 2212 and 2223 textures are approximately identical, and Avrami plots of the transformation kinetics give exponents m in the range 1 < m < 2. During the annealing the 2212 linewidth is constant, implying that there is neither strain nor finite-size broadening of the 2212 peaks during the transformation. This points to a transformation mechanism where only a few 2212 grains transform at a given time. Implications of these findings are discussed in relation to intercalation and nucleation-and-growth models.
引用
收藏
页码:293 / 300
页数:8
相关论文
共 24 条
[1]   THE INTERMEDIATE PHASE DURING (BI,PB)(2)SR2CACU2O8+DELTA TO (BI,PB)(2)SR2CA2CU3O10+DELTA PHASE-TRANSFORMATION [J].
BIAN, WM ;
ZHU, YM ;
WANG, YL ;
SUENAGA, M .
PHYSICA C, 1995, 248 (1-2) :119-126
[2]   A triple-crystal diffractometer for high-energy synchrotron radiation at the HASYLAB high-field wiggler beamline BW5 [J].
Bouchard, R ;
Hupfeld, D ;
Lippmann, T ;
Neuefeind, J ;
Neumann, HB ;
Poulsen, HF ;
Rutt, U ;
Schmidt, T ;
Schneider, JR ;
Sussenbach, J ;
von Zimmermann, M .
JOURNAL OF SYNCHROTRON RADIATION, 1998, 5 :90-101
[3]   LAYER-RIGIDITY MODEL AND THE MECHANISM FOR ION-DIFFUSION-CONTROLLED KINETICS IN THE BISMUTH CUPRATE 2212-TO-2223 TRANSFORMATION [J].
CAI, ZX ;
ZHU, YM ;
WELCH, DO .
PHYSICAL REVIEW B, 1995, 52 (17) :13035-13040
[4]   THE INCOMMENSURATE MODULATION OF THE 2212 BI-SR-CA-CU-O SUPERCONDUCTOR [J].
GAO, Y ;
LEE, P ;
COPPENS, P ;
SUBRAMANIAN, MA ;
SLEIGHT, AW .
SCIENCE, 1988, 241 (4868) :954-956
[5]   CRYSTALLOGRAPHIC, THERMODYNAMIC, AND TRANSPORT-PROPERTIES OF THE BI2SR3-XCAXCU2O8+DELTA SUPERCONDUCTOR [J].
GRADER, GS ;
GYORGY, EM ;
GALLAGHER, PK ;
OBRYAN, HM ;
JOHNSON, DW ;
SUNSHINE, S ;
ZAHURAK, SM ;
JIN, S ;
SHERWOOD, RC .
PHYSICAL REVIEW B, 1988, 38 (01) :757-760
[6]   Visualization of the formation of the (Bi,Pb)(2)Sr2Ca2Cu3O10+delta phase [J].
Grivel, JC ;
Flukiger, R .
SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 1996, 9 (07) :555-564
[7]   Studies of the formation mechanism of the (Bi,Pb)2Sr2Ca2Cu3O10+δ phase [J].
Grivel, JC ;
Grindatto, DP ;
Grasso, G ;
Flukiger, R .
SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 1998, 11 (01) :110-115
[8]   Two-dimensional detector software: From real detector to idealised image or two-theta scan [J].
Hammersley, AP ;
Svensson, SO ;
Hanfland, M ;
Fitch, AN ;
Hausermann, D .
HIGH PRESSURE RESEARCH, 1996, 14 (4-6) :235-248
[9]   HIGH-FIELD CRITICAL CURRENT DENSITIES IN BI2SR2CA1CU2O8+X/AG WIRES [J].
HEINE, K ;
TENBRINK, J ;
THONER, M .
APPLIED PHYSICS LETTERS, 1989, 55 (23) :2441-2443
[10]  
Hulbert S. F, 1969, J BRIT CERAM SOC, V6, P11