On geometrical alignment properties of two-dimensional forced turbulence

被引:26
作者
Protas, B
Babiano, A
Kevlahan, NKR
机构
[1] Warsaw Univ Technol, Inst Aeronaut & Appl Phys, Dept Aerodynam, PL-00665 Warsaw, Poland
[2] Ecole Super Phys & Chim Ind, Phys & Mecan Milieux Heterogenes Lab, CNRS, URA 857, F-75231 Paris 05, France
[3] Ecole Normale Super, CNRS, LMD, F-75231 Paris 5, France
[4] McMaster Univ, Dept Math & Stat, Hamilton, ON L8S 4K1, Canada
关键词
2D turbulence; vorticity gradient; geometrical alignments;
D O I
10.1016/S0167-2789(98)00301-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper we study some geometrical properties of the small scales in 2D numerical turbulence. We analyze the alignment of the vorticity gradient with respect to the eigenvectors of the rate of strain tensor, a phenomenon related to the dynamics of the enstrophy cascade. Numerical simulations with different resolutions and dissipation models are used to show non-trivial dependence of the alignment on both the magnitude of the vorticity gradient and the Reynolds number. These findings are shown to be dynamical in origin and imply organization of the small scales in the flow. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:169 / 179
页数:11
相关论文
共 20 条
[1]   ALIGNMENT OF VORTICITY AND SCALAR GRADIENT WITH STRAIN RATE IN SIMULATED NAVIER-STOKES TURBULENCE [J].
ASHURST, WT ;
KERSTEIN, AR ;
KERR, RM ;
GIBSON, CH .
PHYSICS OF FLUIDS, 1987, 30 (08) :2343-2353
[2]   ON THE VALIDITY OF THE WEISS CRITERION IN 2-DIMENSIONAL TURBULENCE [J].
BASDEVANT, C ;
PHILIPOVITCH, T .
PHYSICA D, 1994, 73 (1-2) :17-30
[3]  
BASDEVANT C, 1981, J ATMOS SCI, V38, P2305, DOI 10.1175/1520-0469(1981)038<2305:ASOBMF>2.0.CO
[4]  
2
[5]   3-DIMENSIONAL INSTABILITY OF ELLIPTIC FLOW [J].
BAYLY, BJ .
PHYSICAL REVIEW LETTERS, 1986, 57 (17) :2160-2163
[6]   THE DYNAMICS OF FREELY DECAYING TWO-DIMENSIONAL TURBULENCE [J].
BRACHET, ME ;
MENEGUZZI, M ;
POLITANO, H ;
SULEM, PL .
JOURNAL OF FLUID MECHANICS, 1988, 194 :333-349
[7]   GEOMETRIC STATISTICS IN TURBULENCE [J].
CONSTANTIN, P .
SIAM REVIEW, 1994, 36 (01) :73-98
[8]   DECAY OF 2-DIMENSIONAL HOMOGENEOUS TURBULENCE [J].
HERRING, JR ;
ORSZAG, SA ;
KRAICHNA.RH ;
FOX, DG .
JOURNAL OF FLUID MECHANICS, 1974, 66 (NOV25) :417-444
[9]   An exact criterion for the stirring properties of nearly two-dimensional turbulence [J].
Hua, BL ;
Klein, P .
PHYSICA D, 1998, 113 (01) :98-110
[10]   VORTEX STRIPPING AND THE GENERATION OF HIGH VORTICITY GRADIENTS IN 2-DIMENSIONAL FLOWS [J].
LEGRAS, B ;
DRITSCHEL, D .
APPLIED SCIENTIFIC RESEARCH, 1993, 51 (1-2) :445-455