Stabilizing Lithium Metal Anodes by Uniform Li-Ion Flux Distribution in Nanochannel Confinement

被引:432
作者
Liu, Wei [1 ]
Lin, Dingchang [1 ]
Pei, Allen [1 ]
Cui, Yi [1 ,2 ]
机构
[1] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[2] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA
关键词
POLYMER ELECTROLYTES; DENDRITIC GROWTH; ELECTRODEPOSITION; DEPOSITION; COMPOSITE; CHALLENGES; GENERATION; LIQUID;
D O I
10.1021/jacs.6b08730
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The widespread implementation of high-energy-density lithium metal batteries has long been fettered by lithium dendrite-related failure. Here we report a new strategy to address the issue of dendrite growth by a polyimide-coating layer with vertical nanoscale channels of high aspect ratio. Smooth, granular lithium metal was deposited on the modified electrode instead of typical filamentary growths. In a comparison with the bare planar electrode, the modified electrode achieved greatly enhanced Coulombic efficiency and longer cycle life. Homogeneous Li+ flux distribution above the modified electrode from the nanochannel confinement can account for a uniform Li nucleation and a nondendrite growth. We also demonstrated that the polyimide coating with microscale pores loses the confinement effects and fails to suppress lithium dendrites. This strategy of spatially defined lithium growth in vertical-aligned nanochannels provides a novel approach and a significant step toward stabilizing Li metal anodes.
引用
收藏
页码:15443 / 15450
页数:8
相关论文
共 46 条
[1]   Transition of lithium growth mechanisms in liquid electrolytes [J].
Bai, Peng ;
Li, Ju ;
Brushett, Fikile R. ;
Bazant, Martin Z. .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (10) :3221-3229
[2]  
Bhattacharyya R, 2010, NAT MATER, V9, P504, DOI [10.1038/nmat2764, 10.1038/NMAT2764]
[3]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[4]   High capacity Li ion battery anodes using Ge nanowires [J].
Chan, Candace K. ;
Zhang, Xiao Feng ;
Cui, Yi .
NANO LETTERS, 2008, 8 (01) :307-309
[5]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[6]  
Chandrashekar S, 2012, NAT MATER, V11, P311, DOI [10.1038/NMAT3246, 10.1038/nmat3246]
[7]   Correlating Microstructural Lithium Metal Growth with Electrolyte Salt Depletion in Lithium Batteries Using 7Li MRI [J].
Chang, Hee Jung ;
Ilott, Andrew J. ;
Trease, Nicole M. ;
Mohammadi, Mohaddese ;
Jerschow, Alexej ;
Grey, Clare P. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (48) :15209-15216
[8]   ELECTROCHEMICAL ASPECTS OF THE GENERATION OF RAMIFIED METALLIC ELECTRODEPOSITS [J].
CHAZALVIEL, JN .
PHYSICAL REVIEW A, 1990, 42 (12) :7355-7367
[9]   Nanocomposite polymer electrolytes for lithium batteries [J].
Croce, F ;
Appetecchi, GB ;
Persi, L ;
Scrosati, B .
NATURE, 1998, 394 (6692) :456-458
[10]   Nanostructured Sn-C composite as an advanced anode material in high-performance lithium-ion batteries [J].
Derrien, Gaelle ;
Hassoun, Jusef ;
Panero, Stefania ;
Scrosati, Bruno .
ADVANCED MATERIALS, 2007, 19 (17) :2336-+