Controlled instability and multiscaling in models of epitaxial growth

被引:58
作者
Dasgupta, C [1 ]
DasSarma, S [1 ]
Kim, JM [1 ]
机构
[1] UNIV MARYLAND, DEPT PHYS, COLLEGE PK, MD 20742 USA
关键词
D O I
10.1103/PhysRevE.54.R4552
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We show that discretized versions of commonly studied nonlinear growth equations have a generic instability in which isolated pillars (or grooves) on an otherwise flat interface grow in time when their height (or depth) exceeds a critical value. Controlling this instability by the introduction of higher-order nonlinear terms leads io intermittent behavior characterized by multiexponent scaling of height fluctuations, similar to the ''turbulent'' behavior found in recent simulations of one-dimensional atomistic models of epitaxial growth.
引用
收藏
页码:R4552 / R4555
页数:4
相关论文
共 15 条
[1]   A NEW UNIVERSALITY CLASS FOR KINETIC GROWTH - ONE-DIMENSIONAL MOLECULAR-BEAM EPITAXY [J].
DASSARMA, S ;
TAMBORENEA, P .
PHYSICAL REVIEW LETTERS, 1991, 66 (03) :325-328
[2]   KINETIC SUPERROUGHENING AND ANOMALOUS DYNAMIC SCALING IN NONEQUILIBRIUM GROWTH-MODELS [J].
DASSARMA, S ;
GHAISAS, SV ;
KIM, JM .
PHYSICAL REVIEW E, 1994, 49 (01) :122-125
[3]   Scale invariance and dynamical correlations in growth models of molecular beam epitaxy [J].
DasSarma, S ;
Lanczycki, CJ ;
Kotlyar, R ;
Ghaisas, SV .
PHYSICAL REVIEW E, 1996, 53 (01) :359-388
[4]   GENERALIZATIONS OF THE KARDAR-PARISI-ZHANG EQUATION [J].
DOHERTY, JP ;
MOORE, MA ;
KIM, JM ;
BRAY, AJ .
PHYSICAL REVIEW LETTERS, 1994, 72 (13) :2041-2044
[5]   MULTISCALING GENERATED BY TIME-DEPENDENT CLASSICAL FIELD-THEORIES [J].
ECKMANN, JP ;
PROCACCIA, I .
PHYSICS LETTERS A, 1993, 182 (01) :93-98
[6]   DYNAMIC SCALING OF GROWING INTERFACES [J].
KARDAR, M ;
PARISI, G ;
ZHANG, YC .
PHYSICAL REVIEW LETTERS, 1986, 56 (09) :889-892
[7]   DISCRETE MODELS FOR CONSERVED GROWTH EQUATIONS [J].
KIM, JM ;
DASSARMA, S .
PHYSICAL REVIEW LETTERS, 1994, 72 (18) :2903-2906
[8]   DYNAMICAL UNIVERSALITY OF THE NONLINEAR CONSERVED CURRENT EQUATION FOR GROWING INTERFACES [J].
KIM, JM ;
DASSARMA, S .
PHYSICAL REVIEW E, 1995, 51 (03) :1889-1893
[9]   TURBULENT INTERFACES [J].
KRUG, J .
PHYSICAL REVIEW LETTERS, 1994, 72 (18) :2907-2910
[10]   KINETIC GROWTH WITH SURFACE RELAXATION - CONTINUUM VERSUS ATOMISTIC MODELS [J].
LAI, ZW ;
DASSARMA, S .
PHYSICAL REVIEW LETTERS, 1991, 66 (18) :2348-2351