An inverse parabolic problem with non-zero initial condition

被引:35
作者
Choulli, M [1 ]
Yamamoto, M [1 ]
机构
[1] UNIV TOKYO,DEPT MATH SCI,MEGURO KU,TOKYO 153,JAPAN
关键词
D O I
10.1088/0266-5611/13/1/003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the inverse problem of recovering the coefficient q(x), appearing in an initial-boundary value problem for the equation partial derivative,u = Delta u + q(x)u, from overdetermined final data. We prove, under some conditions, that this inverse problem is locally well-posed in L(2) around 0 when q is assumed to be a priori supported in some suitable subset.
引用
收藏
页码:19 / 27
页数:9
相关论文
共 14 条
[1]  
Adams A, 2003, SOBOLEV SPACES
[2]   Generic well-posedness of an inverse parabolic problem - The Holder-space approach [J].
Choulli, M ;
Yamamoto, M .
INVERSE PROBLEMS, 1996, 12 (03) :195-205
[3]  
CHOULLI M, 1993, CR ACAD SCI I-MATH, V316, P1041
[4]   AN INVERSE PROBLEM FOR A SEMILINEAR PARABOLIC EQUATION [J].
CHOULLI, M .
INVERSE PROBLEMS, 1994, 10 (05) :1123-1132
[5]  
COURANT R, 1953, METHODS MATH PHYSICS, V1
[6]  
Friedman A., 1964, Partial Differential Equations of Parabolic Type
[7]   CONCRETE CHARACTERIZATION OF DOMAINS OF FRACTIONAL POWERS OF SOME ELLIPTIC DIFFERENTIAL OPERATORS OF 2ND ORDER [J].
FUJIWARA, D .
PROCEEDINGS OF THE JAPAN ACADEMY, 1967, 43 (02) :82-&
[8]  
Gilbarg D, 1977, ELLIPTIC PARTIAL DIF
[9]  
Hoffmann KH., 1993, LECT NOTES PHYS, V422, P49, DOI [10.1007/3-540-57195-7_7, DOI 10.1007/3-540-57195-7_7]
[10]  
Isakovs V., 1991, COMMUN PURE APPL MAT, V54, P185