Enhanced anaerobic biotransformation of carbon tetrachloride in the presence of reduced iron oxides

被引:50
作者
Kim, S [1 ]
Picardal, FW [1 ]
机构
[1] Indiana Univ, Sch Publ & Environm Affairs, Bloomington, IN 47405 USA
关键词
carbon tetrachloride; iron oxide; reductive dechlorination; Shewanella putrefaciens;
D O I
10.1002/etc.5620181005
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Rates of anaerobic transformation of carbon tetrachloride (CT) by the facultative anaerobe Shewanella putrefaciens 200 were increased by the presence of Fe(III)-containing minerals. In batch reactors with amorphous, Fe(III)-hydroxide and S. putrefaciens, CT transformation rates could be modeled by a first-order expression in which the pseudo-first-order rate constant was linearly proportional to the initial concentration of Fe(III)-oxide. Subsequent measurement of soluble and acid-extractable Fe(II) showed that increased CT transformation rates were proportional to microbially reduced, surface-bound Fe(II), rather than soluble Fe(II). In biomimetic experiments using 20 mM dithiothreitol (DTT) as a reductant, rates of transformation of CT by DTT were low in the absence of Fe(III)-oxides. However, in the presence of iron oxides, DTT was able to transform CT at elevated rates. Results again strongly suggested that surface-bound Fe(II) was primarily responsible for the reductive transformation of CT. Results suggested that the surface area of the iron mineral determines the rate of CT transformation by affecting the extent of iron reduction. Chloroform (CF) was the only transformation product identified and production of CF was nonstoichiometric. In microbial and abiotic experiments with Fe(III) oxides, the percentage of the transformed CT recovered as CF decreased even though the rate and extent of CT transformation was increased. Overall, our results have important implications for an improved understanding of possible microbial and geochemical interactions in the environmental transformation of chlorinated organic pollutants and for modeling of CT transformation rates in anaerobic, iron-hearing sediments.
引用
收藏
页码:2142 / 2150
页数:9
相关论文
共 45 条
[1]   REGULATION OF DISSIMILATORY FE(III) REDUCTION ACTIVITY IN SHEWANELLA-PUTREFACIENS [J].
ARNOLD, RG ;
HOFFMANN, MR ;
DICHRISTINA, TJ ;
PICARDAL, FW .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1990, 56 (09) :2811-2817
[2]   REDUCTIVE DISSOLUTION OF FE(III) OXIDES BY PSEUDOMONAS SP 200 [J].
ARNOLD, RG ;
DICHRISTINA, TJ ;
HOFFMANN, MR .
BIOTECHNOLOGY AND BIOENGINEERING, 1988, 32 (09) :1081-1096
[3]   REDUCTIVE DECHLORINATION OF CARBON-TETRACHLORIDE BY COBALAMIN(II) IN THE PRESENCE OF DITHIOTHREITOL - MECHANISTIC STUDY, EFFECT OF REDOX POTENTIAL AND PH [J].
ASSAFANID, N ;
HAYES, KF ;
VOGEL, TM .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1994, 28 (02) :246-252
[4]   Soil- and surfactant-enhanced reductive dechlorination of carbon tetrachloride in the presence of Shewanella putrefaciens 200 [J].
Backhus, DA ;
Picardal, FW ;
Johnson, S ;
Knowles, T ;
Collins, R ;
Radue, A ;
Kim, S .
JOURNAL OF CONTAMINANT HYDROLOGY, 1997, 28 (04) :337-361
[5]   REDUCTIVE DEHALOGENATION OF CARBON-TETRACHLORIDE BY ESCHERICHIA-COLI K-12 [J].
CRIDDLE, CS ;
DEWITT, JT ;
MCCARTY, PL .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1990, 56 (11) :3247-3254
[6]   TRANSFORMATION OF CARBON-TETRACHLORIDE BY PSEUDOMONAS SP STRAIN KC UNDER DENITRIFICATION CONDITIONS [J].
CRIDDLE, CS ;
DEWITT, JT ;
GRBICGALIC, D ;
MCCARTY, PL .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1990, 56 (11) :3240-3246
[7]   ELECTROLYTIC MODEL SYSTEM FOR REDUCTIVE DEHALOGENATION IN AQUEOUS ENVIRONMENTS [J].
CRIDDLE, CS ;
MCCARTY, PL .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1991, 25 (05) :973-978
[8]   SURFACE-AREAS AND POROSITIES OF FE(III)-DERIVED AND FE(II)-DERIVED OXYHYDROXIDES [J].
CROSBY, SA ;
GLASSON, DR ;
CUTTLER, AH ;
BUTLER, I ;
TURNER, DR ;
WHITFIELD, M ;
MILLWARD, GE .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1983, 17 (12) :709-713
[9]   Reduction of pertechnetate by ferrous iron in solution: Influence of sorbed and precipitated Fe(II) [J].
Cui, DQ ;
Eriksen, TE .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1996, 30 (07) :2259-2262
[10]   Reduction of pertechnetate in solution by heterogeneous electron transfer from Fe(II)-containing geological material [J].
Cui, DQ ;
Eriksen, TE .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1996, 30 (07) :2263-2269