Spectral problems for the dirac system with spectral parameter in local boundary conditions

被引:11
作者
Agranovich, MS [1 ]
机构
[1] Moscow Inst Elect & Math, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1023/A:1012368826639
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a spectral boundary value problem in a 3-dimensional bounded domain for the Dirac system that describes the behavior of a relativistic particle in an electromagnetic field. The spectral parameter is contained in a local boundary condition. We prove that the eigenvalues of the problem have finite multiplicities and two points of accumulation, zero and infinity and indicate the asymptotic behavior of the corresponding series of eigenvalues. We also show the existence of an orthonormal basis on the boundary consisting of two-dimensional parts of the four-dimensional eigenfunctions.
引用
收藏
页码:161 / 175
页数:15
相关论文
共 18 条
[1]  
Agranovich M., 1997, Encyclopaedia of Mathematical Sciences, V79, P1
[2]  
AGRANOVICH MS, 1976, DOKL AKAD NAUK SSSR+, V231, P777
[3]   Estimates of s-numbers and spectral asymptotics for integral operators of potential type on nonsmooth surfaces [J].
Agranovich, MS ;
Amosov, BA .
FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1996, 30 (02) :75-89
[4]  
AGRANOVICH MS, 1985, T MOSCOW MATH SOC, V0047, P00023
[5]  
AGRANOVICH MS, SPECTRAL PROPERTIES, P289
[6]  
[Anonymous], 1990, CURRENT PROBLEMS MAT
[7]  
[Anonymous], GENERALIZED METHOD E
[8]  
Booss-Bavnbek B, 1993, Elliptic boundary problems for Diracoperators, inMathematics:Theory&Applications
[9]  
Gel'fand I. M., 1958, REPRESENTATIONS GROU
[10]   FINITE-VOLUME VARIATIONAL METHOD FOR THE DIRAC-EQUATION [J].
HAMACHER, P ;
HINZE, J .
PHYSICAL REVIEW A, 1991, 44 (03) :1705-1711