A hybrid approach to vehicle routing using neural networks and genetic algorithms

被引:44
作者
Potvin, JY
Dube, D
Robillard, C
机构
[1] Centre de Recherche Sur Les Transports, Université de Montréal, Montréal, Que. H3C 3J7, C.P. 6128, Succ. Centre-Ville
[2] Centre de Recherche sur les Transports, Department of Computer Science and Operations Research
关键词
vehicle routing; time windows; neural networks; genetic algorithms;
D O I
10.1007/BF00126629
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A competitive neural network model and a genetic algorithm are used to improve the initialization and construction phase of a parallel insertion heuristic for the vehicle routing problem with time windows. The neural network identifies seed customers that are distributed over the entire geographic area during the initialization phase, while the genetic algorithm finds good parameter settings in the route construction phase that follows. Computational results on a standard set of problems are also reported.
引用
收藏
页码:241 / 252
页数:12
相关论文
共 20 条